
April, 1990
Volume 1, No. 2
Beware the April

Fool

The Journal of Apple II Programming

Bert Kersey
Where are you? ... ·

This Inonth in 8/16:
The Publisher's Pen, Ross W. Lambert 3
Apple Discontiues Macintosh!, R. Staph 4
Pretty Polygons, Barry D. Hatchett 5
Have it Your Way- & Their Way, Phil Doto 8
Insecticide.. 14
More MLI Madness, Ross W. Lambert 15
No Fits with Inits, Mike Westerfield 20
Apple II Infinitum, Jerry Fellows 26
Gimme a Light, Jerry Kindall 28
Rolling Your Own (Controls), Steve Stephenson .35
Hired Guns .. 40
$10,000 Cash Prize Winners 45

• 10 Year Shelf Life
• Top Quality Lithium

Purchase Slide-On battery (m1IL rr -!k~)
lt'!mcto~"-'oJPy<lUUille kits from your local _ _

dealer, distributor, user's
group, or direct from Nite
Owl.
School Purchase Orders
are welcome.
Order your JIGS a spare
today!

Telephone:
(913) 362-9898

Quantity • Pricing

FAX: Add $2 .00 I Order
(913) 362-5798 Overseas add $5.00

New kit restores your Apple /las
and

saves you the hassle and expense
of normal solder type batteries.

If you purchased an Apple IIGS computer before August
1989 (512K model), a Lithium battery was soldered onto the
computer board at the factory and the internal clock started
ticking. It is just a matter of time until the battery runs out of juice
and your computer forgets what day it is and any special settings
you have selected in the Control Panel.

If the software you are running uses the date and time to
keep track of records you could be in for real trouble when the
clock runs out. The IIGS is also known to lose disk drives along
with numerous other side effects caused by a dead battery.

Before the introduction of Nite Owl's Slide-On battery, the
normal method for replacing the IIGS battery was to pack your
computer up and take it to your local Apple dealer. The service
department would solder on a new one and charge you a small
fee, usually between $40 and $80. That was very inconvenient ,
time consuming, and expensive for the typical computer owner.

Slide-On battery replacement is not much more difficult
than changing a light bulb. Using wire cutters. scissors. or nail
clippers, the old battery is removed leaving the original wires still
soldered to the mother board. The new Slide-On battery has
special terminals which have been designed to fit onto the old
battery wires. It usually takes only a couple of minutes.
Complete, easy-to-follow instructions are included with every kit .

Typically, our customers have reported that the original
equipment batteries have an average life expectancy of 2 to 3
years. This is about half as long as they were supposed to last.
Slide-On replacement kits include Heavy Duty batteries which
should provide for a longer battery service life.

We highly recommend that every IIGS owner keep a spare
battery on hand, ready for when the inevitable battery failure
occurs. These Lithium batteries have a shelf life of over 10 years .
The Slide-On kits come with a full 90 day satisfaction guarantee.

Ship to:

Telephone #:
Credit Card or PO#

r-----------------l I Nite Owl Productions I 1-=--~~~----;-~------+-K-an-s-as--t------i
I S li de-0 n Battery De pt. A I 1 ,---,-----:-.,.--~-:--:-....,.-~-----t~s~al~es;;;T~ax~r---~

5734 Lamar Avenue I I-, am interested Shipping & I Handling
I Mission, KS 66202 1 ~ L
l_----- J) Sf_-------- J L..:::...:_ ___ --=----:-----:-----L----L..---__.

(Cut & Paste Address Label) P'lces m::y Char.ge Wlthout notice.

Copyright (C) 1990, Ariel Publishing, Most Rights Reserved

Publisher & Editor-in-Chief
Classic Apple Editor
Apple llgs Editor
Contributing Editors

Subscription Services

Ross W. Lambert
Jerry Kindall
Eric Mueller
Walter Torres-Hurt
Mike Westerfield
Steve Stephenson
Jay Jennings
Tamara Lambert
Becky Milton

Introductory subscription prices in US dollars:

• magazine
1 year $29.95 2 years $56

• disk
1 year $69.95 6 mo $39.95 3 mo. $21

Canada and Mexico add $5 per year per product ordered.
Non-North American orders add $15 per year per product
ordered.

WARRANTY and LIMITATION of LIABILITY

Ariel Publishing, Inc. warrants that the information in 8116 is
correct and useful to somebody somewhere. Any subscriber
may ask for a full refund of their last subscription payment at any
time. Ariel Publishing's LIABILITY FOR ERRORS AND OMIS
SIONS IS LIMITED TO THIS PUBLICATION'S PURCHASE
PRICE. In no case shall Ariel Publishing, Inc. Ross W. Lambert,
the editorial staff, or article authors be liable for any incidental or
consequential damages, nor for ANY damages in excess of the
fees paid by a subscriber.

Subscribers are free to use program source code printed herein
in their own compiled, stand-alone applications with no licensing
application or fees required. Ariel Publishing prohibits the distri
bution of source code printed in our pages without our prior per
mission.

Direct all correspondence to: Ariel Publishing, Inc., P.O. Box
398, Pateros, WA 98846 (509) 923-2249.

Apple, Apple II, Apple lie, Apple llgs, Apple lie, Apple lie+, Ap
ple Talk, Apple Programmers Workshop, and Macintosh are all
registered trademarks of Apple Computers, Inc.

Apple Works is a registered trademark of Claris, Corp.

ZBasic is a registered trademark of Zedcor, Inc.

Micol Advanced Basic is a registered trademark of Micol
Sytems, Canada

We here at Ariel Publishing freely admit our shortcomings, but
nevertheless strive to bring glory to the Lord Jesus Christ.

The
Publisher's
Pen
by Ross W. Lambert

Though many have tried to legislate and regulate it into
impotency, the Law of Supply and Demand is as
immutable as gravity, and just as natural. It is the way
things are, especially in the software and publishing
businesses.

Case in point: the good folks at Softdisk™ Publishing
are often the first to feel the winds of change because
they distribute so many programs each month. They
are fine tuned to both the consumer market and the
labor market in the programming community.

Jay Wilbur, the Apple II editor at Softdisk, has been
beating the bushes for weeks for 8 bit software for the
tens of thousands of lie, lie, and lie+ owners who
subscribe. There is a definite shortage of new packages
for that market. even though all those 8 bit computers
out there are not being incinerated.

I find that interesting. He and I both agree that it has
something to do with the fact that programmers are
more Minto" their machines than most folks, and so have
moved up to the GS in disproportionate numbers.

This has produced the rather unique situation where, to
attract 8 bit developers, Softdisk has increased their
compensation for 8 bit programs to a level above that for
GS software! Even El Casa Ariel (uh, that's us) is in dire
need of 8 bit related articles and source code.

For those of you who can act quickly, this is a tremen
dous opportunity. I think it is fairly safe to say that The
Law of Supply and Demand will come into play again as
Softdisk is flooded with 8 bit material. But a free market
system rewards the nimble. Give Jay a call (318) 221-
5134.

On a larger scale, and this is really the point, don't forget
tha t the 5 million Apple lie's, lie's, IIe+'s, and even II+'s
did not mysteriously vaporize overnight. Claris and
Beagle Bros. have been making a small fortune because
they recognize this fact. == Ross ==

We tease those we love- this is an April Fool's Joke, John

Apple Discontinues Macintosh!
Cupertino - (APL) - Apple Computers. Inc. announced
today that they are discontinuing production of the
entire Macintosh™ line, effective January 1st. 1992.
Company spokesman Jonathan (Darth) Vader read
from a prepared statement which stated that. "It is the
position of the board of directors that dropping the
Macintosh line will maximize profits in the short run,
thereby heading off the decline in the price of our stock.
Having examined the recent earnings history of the
company, the board came to the conclusion that Apple's
neglect of the Apple II™ line over the last six years has
resulted in billions of dollars of profits for the company,
and with very little overhead. The board feels that a
similar sort of neglect in the mutli-billion dollar Macin
tosh market should likewise produce as much or more
immediate profits."

During the barrage of questions that followed the an
nouncement, Vader was asked if Apple. Inc. was going
to announce a new hardware product to replace the
Macintosh and Apple II lines. He replied. "For the
record, it is against company policy to discuss
unannounced products. OfT the record, however, I can
tell you that we have a hip and happening little 1
gigabyte machine that we've tucked into a Pee-Chee.
The CD ROM disks that drive the machine double as
frisbees. so the $35,000 retail price ought to be well
worth it."

Using a single hires graphic generated by an Apple II+.
Vader also displayed the new Apple corporate logo:

o o o the customer o

Vader refused comment about reports that Joe Louis
Gassey had been forced to resign during the recent up
heavals at the company. Gassey, a flamboyant indi
vidualist who headed Apple Albania during the early
1980's, has been rumored to have filled out employment
applications at Laser Computers, Microsoft. and Ariel
Publishing.

Ariel's President, Ross W. Lambert. refused to confirm
or deny the report, but noted that, "Ariel Publishing re
mains committed to programming in BASIC (among
other things). and since Mr. Gassey has publicly stated
that. 'BASIC is dangerous to the mind .. .', I have
serious doubts as to his ability to prosper in our envi
ronment, not to mention pronounce the word 'danger
ous'. Besides, there are no Albanian restaurants in
Pateros. WA, and everybody here wears sweat pants
and T -shirts to work. "

In a related development, Apple CEO Ron Skulby is
reported to have recently signed a lucrative acting con
tract with Coca-Cola, Inc. The Coke company spokes
person stated that. "We have signed Mr. Skulby to be
our new product spokesman during a multi-year com
mercial campaign."

When asked why he accepted the spokesperson's po
sition with his former arch-rival, Mr. Skulby said, ~Hey
man. I need the money. The board here at Apple tied my
salary to future profits."

In an interview with Bahbah Waters on national tele
vision. Italian computer industry analyst Tom
Swihart! speculated that , "Apple's moves are well
calculated and bold. With no hardware to sell. they are
a company without a product. This is a highly unusual
situation, unqiue in the short history of the microcom
puter industry. However, the total lack of overhead
required to maintain this position might possibly allow
Apple to improve the bottom line on less gross revenue.
And if that fails. they can always sell linguini ... "

Former Apple evangelist Guy Yamaha was also re
ported to have contacted Joe Louis Gassey about start
ing a new hardware company in partnership with
65816 producer William Mensch. In a memo recently
leaked to the press. Gassey is reported to have replied.
"Why de hack nut, man, we both be out of a job now
anyways. I be doin' it so long as I donna have to talk wit
dat Mensh (sic) man."

This development startled many in the industry. but as
the saying goes. "Neccessity (and unemploy·ment)
makes for strange bedfellows."

• • • ~· • •.-.• • • • • • • • • • • • •I B~ascl·ally Applesoft ~ •
•••••• -~ ~~~~ L... -----.~.., ________ ___,1• .. ~~~~ ... ~~~

Pretty Polygons
by Barry D. Hatchett

Applesoft has several built-in commands for hi-res
graphics. Unfortunately, no commands are available
for plotting polygons or circles. I have written a
unversal polygon plotter which can draw regular poly
gons with any number of sides, and can also "rotate"
them around the X. Y, and Z axes, allowing you to
"distort" your polygons in all sorts of interesting ways.
It usesApplesoft's built-in SIN and COS functions. but
you don't have to understand trigonometry to use it.

The routine itself can be found in Listing 1. It's short
and simple. I have attempted to keep it to only one or
two statements per line. just to make it easier to read
and understand. In situations where more speed is
required, you could "optimize" it by putting more
statements on a line.

To use the routine, you must first set up a few variables
which serve as the parameters for drawing your poly
gon. First. set XC and YC to the X and Y coordinates
of the center of your polygon. Set R to its radius- the
length (in pixels) from the center to a vertex of the
polygon. Set N to the number of sides in your polygon:
5 for a pentagon, 8 for an octagon. and so on. Circles
can be drawn by using a large number of sides, say
100. Set XR. YR. and ZR to the rotation (in degrees)
around the X, Y. and Z axes, respectively. (I will
discuss the effects of the various rotations shortly.)
Make sure you have initialized a hi-res display page
and set the plotting color. then GOSUB 1000. Like
magic, your polygon appears on the hi-res screen.

Internally, the routine uses a few variables of its own
for scratch. These variables are XO, YO, X, Y, P2, EX.
EY, EZ, EV, S, E, and I. You don't have to set these. but
don't try to use them in the program that calls the
routine, because you will lose the data contained by
them whenever you plot a polygon.

Rotation

As I said earlier. you can rotate your polygons around
three axes. The X andY axes are just as you'd expect.
Rotating a polygon around the X axis will cause it to get

Figure I

shorter because you are "viewing" it from an angle.
Rotating around theY axis will cause it to get narrower.
Both the X and theY rotations can range from zero to 90
degrees. At zero degrees, the polygon is displayed
normally. At 90 degrees. the polygon is displayed as a
straignt line!

Using the X andY rotation simultaneously can result in
strange shapes; for example, if you use a rotation of 90
degrees for both the X and Y axis, you will get a single
point, which is clearly not the right shape. If you set the
X andY rotations to the same value, you can make the
whole polygon smaller, but it is easier to change the
radius to get this effect. I reccommend you always use
one or the other of the X andY rotation, but noth both.

The Z axis can be thought of as a straight line emerging
from the center of the polygon. Rotation around the Z
axis means clockwise or counterclockwise rotation.
Postive values of ZR rotate the polygon clockwise;
negative values, counterclockwise. You can use Z
rotation in conjunction with either X or Y rotation. The
Z rotation is applied last, so you can rotate an elongated
(or squashed) polygon around its center. Experiment!
I am sure you will like the results.

How it Works

Trigonometry (the measurement of triangles) and
circles are closely related. Given an angle, we can
calcu late, by using the SIN (sine) and COS (cosine)
functions. the point on a unit circle (a circle with a
radius of 1) associated with that angle. Scaling that
point outward by multiplying by the radius allows us to

Figure 2

place the pomr on a c1rc1e 01 any ramus. 11 we calculate
six evenly spaced points on the circle. we can connect
the six points to draw the inscribed hexagon. This is
exactly how the routine works. except that things are
further complicated by rotation.

To implement rotation around the X and Y axes. we
calculate the cosine of the rotation angle and use it as
a multiplier to "shorten" the appropriate axis. For
example, if you pass the routine a rotation about theY
axis of 45 degrees. it calculates a cosine of about
.707107, and multiplies each X coordinate by that
amount. making the polygon about 1/3 narrower than
it would usually be.

Rotation arount the Z axis is somewhat trickier. Given
a point (X. Y). and an angle ZR, we can calculate a new
point (XO, YO) rotated about the Z axis with the following
formulas:

X0 = X * COS (ZR) - Y * SIN (ZR)
Y0 = Y * COS (ZR) - X * SIN (ZR)

Since zx. zv. and ZR are constant for a given polygon.
their sines and cosines are constant as well. Thus, in
lines 1020- 1050. we can pre-calculate the ratios
needed to handle the rotation. before the actual plotting
loop begins. (By the way, the expression inside the
parentheses in these lines converts the value specified
in angles to a value in radians. Most people like to think
in degrees, but mathematicians and Applesoft like to
think in radians.) Since SIN and COS are slow func
tions. our routine runs much faster than if we redun
dantly calculated the needed sines and cosines each
time through the loop.

In line 1060 we calculate the step value for the loop by
dividing the circle (which contains two Urnes pi radians)
into N even portions. The end point for the loop is
defined to be just a wee bit past two pi radians, so that
we can be sure that the final line segment back to the

first point will be plotted.

Lines 1070-1150 compose the main plotting loop. Lines
1080 and 1090 determine the coordinates of the cur
rent point, adjusting for the radius and the X andY axis
rotation values. Lines 1100 and 1110 adjust for rota
tion about the Z axis. Line 1120 add in the center
coordinates of the polygon (until this point, the
polygon's points are calculated as if its center was at
0,0). Line 1130 handles the case of the first point being
plotted, we can't use HPWT TO until at least one point
has been plotted, and this line takes care of that. Line
1140 plays connect-the-dots on our calculated points.

And that's all there is to it.

Exciting Graphics

You can use the polygon routine to draw many exciting
pictures. Consider, for example, Listing 2 . You must
type in listing 1 first. then listing 2, because listing 2
requires the polygon routine. Listing 2 draws pictures
like Figure 1 and Figure 2. This is done by choosing a
random polygon from a triangle to an octagon, varying
the radius from 5 to 75 in steps of 10, and by changing
the Z rotation (by a randomly chosen increment) each
time the size is increased.

Listing 3 draws pictures like Figure 3 and Figure 4 .
Once again, a random polygon is chosen, but the size
and Z rotation stay the same: instead, we vary the X and
Y rotations by a pre-chosen random increment.

Figure 3

I am certain you can come up with many more such
"computer art" programs yourself. Give it a try: it is
easy! You might also try playing with the polygon
routine itself to create variations on each artistic
"theme". For example, you could switch EZ and EV in

line 1110, or change line 1080 to read X= R • COS (I) •
COS (I) • EY. Be sure to experiment with different values
of all the rotation factors. You probably won't get
regular polygons anymore if you change the polygon
routine, but what you do get might be even more
visually interesting! Anything goes as long as you are
careful not to let the coordinates get out of range and
generate an "ILLEGAL QUANITIY' error.

The routine is not fast enough for animation, but you
could try anyway. You could also use an array to store
the lines instead of plotting them, then "play back" the
lines stored in the array at a higher speed.

Figure 4

Listing 1: Polygon Subroutine

1000 REM draw polygon
1010 P2 = 6.2831853: REM 2pi
1020 EX = cos (RX I 360 * P2)
1030 EY = cos (RY I 360 * P2)
1040 EZ = cos (RZ I 360 * P2)
1050 EV = SIN (RZ I 360 * P2)
1060 S = P2 I N:E = P2 + .01
1070 FOR I = 0 TO E STEP S
1080 X = R * cos (I) * EY
1090 y = R "' SIN (I) * EX
1100 X0 = X * EZ - Y * EV
1110 Y0 = X * EV + Y * EZ
1120 X = X0 + XC : Y = Y0 + YC
1130 IF I = 0 THEN HPLOT X,Y
1140 HPLOT TO X,Y
1150 NEXT
1160 RETURN

Listing 2: Art Program 1

10 HGR2 : HCOLOR= 3
20 RX = 0:RY = 0:RZ = 0
30 XC = 139:YC = 95
40 N = INT (RND (1) * 6) + 3

45 D = INT (RND (1) "' 10) + 5
50 FOR R = 5 TO 75 STEP 10
60 GOSUB 1000
70 RZ = RZ + D
80 NEXT
90 FOR I = 1 TO 3000: NEXT
100 RUN

Listing 3: Art Program 2

10 HGR2 : HCOLOR= 3
20
30
40
45
50
60
70
80
90
100
110
120
130

RX = 0:RY = 0:RZ = 0
XC = 139:YC = 95:R = 75
N = INT (RND (1) "' 6) + 3
D = INT (RND (1) "' 10) + 5
FOR RX = 0 TO 180 STEP D
GOSUB 1000
NEXT
RX = 0
FOR RY = 0 TO 180 STEP D

GO SUB 1000
NEXT
FOR I = 1 TO 3000 : NEXT
RUN

Ml.croDot just$ 29.95
plus 52.50 S&ll

. . _. ' - .. - . . - - - ...

, ,i~i i~~i!;~! i

: ~:MBi~:::::: ~~~~dr:-:-:~,

Just 2.5K in size, but more powerful than BASIC.SYSTEM.
Imagine doing BASIC overlays simply by specifying the file
name and the line number where you want to overlay. How
about loading an array of directory names at machine lan
guage speed. You get this and total control over ProDOS
that is impossible with BASIC.SYSTEM. Works with Pro
gram Writer ($42.45. Bothfor$59.95+S&H). Loveitorget
your money back! Inexpensive publishers' licenses.

- OealerlnQumeslnvtted

Kitchen Sink Software, Inc
903 Knebworth Ct. Dept. 8
Westerville, OH 43081
(614) 891-2111

Y••••r!'N.-.•rl'h._._._._._._._._._._. ... ~L.-.... $,..1-Ig .. s G .. ra .. p .. h .. i .. cs----~~rl'_._._._......,._._._._._._. • ._._....,..._.,.
Apple Preferred Pies in Pascal

Have it Your Way - & Their Way
by Phil Doto

Apple II GS Super Hi-Res pictures can be (and are)
stored in a wide variety of formats. There are screen
sized pictures and page size pictures: compressed pic
tures and uncompressed pictures: 320 mode pictures
and 640 mode pictures: pictures that use only one
palette and pictures that use all 16 palettes. To help
bring order out of potential chaos, Apple recommends
that all graphics programs support a file format known,
oddly enough, as "Apple Preferred" format.

Apple Preferred Format (APF) pictures are stored on
disk as filetype $CO, auxiliary type $0002. Unlike other
file formats, APF files make very few assumptions about
the picture. These files can contain any picture that
QuickDraw II can handle and all the information
needed to reconstruct the picture is stored in the file.
These files can also store other graphics information,
such as a library of palettes, and the format is very
flexible and can easily be extended to contain additional
information.

In this article, I'll be discussing how to read an APF file,
interpret the information, and display the results. All of
the code is in TML Pascal II and uses Apple's standard
Pascal interfaces. I've tried to design the code in a way
that is easy to follow and understand, even if you
normally work in another language. My hope is to give
you more than just some code that you can "cut and
paste" into your programs. I want to leave you with an
understanding of APF files that will allow you to adapt
and modify these routines to work with your applica
tion.

Loading the File

I could read the information from the file a little bit at a
time, processing it as I go: but, it's less confusing (at
least to me) if I load the file first and then process it.
Listing 1 is a Pascal function that will do the job of
getting a file off the disk and into computer memory.

LISTING 1

function LoadFile(theGSPath :GSString255;
VAA theHandle :Handle;
VAA theSize:longint):boolean;

var paramsOpen :
paramsRead :
paramsClose
paramsEOF

OpenAecGS;
IOAecGS;
AefNumAecGS;
EOFAecGS;
integer;

begin

LoadFile :=false;

{ open the f i 1 e)
paramsOpen.pcount := 2;
paramsOpen.pathname := @theGSPath;
OpenGS(paramsOpen);
theError := _ToolErr;
if theError <> noError then begin

ReportError(theError) ;
ex it (LoadF i 1 e) ;
end;

{ set up the close params)
paramsClose .pcount := 1;
paramsClose.refnum := paramsOpen.refnum;

{find out how many bytes to read)
paramsEOF.pcount := 2;
paramsEOF . refnum := paramsOpen . refnum ;
GetEOFGS(paramsEOF);
theError := _ToolErr;
if theError <> noError then begin

ReportError(theError);
CloseGS(paramsClose);
exit (LoadF i 1 e);
end;

{allocate memory for the file)
theHandle := NewHand1e(paramsEOF .eof .

myMemoryiD .
attrLocked,
n i 1);

theError ·= _ToolErr;
if theError <> noError then begin

ReportError(theError);
C1oseGS(paramsC1ose);
ex it (LoadF i 1 e);
end;

(read it)

end;

paramsRead . pcount := 4 ;
paramsRead.refnum := paramsOpen . refnum;
paramsRead.databuffer := theHandleA;
paramsRead . requestCount := paramsEOF.eof;
ReadGS(paramsRead);
theError := ToolErr;
if theError (> noError then begin

ReportError(theError) ;
CloseGS(paramsClose);
DisposeHandle(theHandle);
exit(LoadFile); .
end;

theSize := paramsEOF.eof;

Loadf i 1 e : = true; (we got it 1 oaded ,)
CloseGS(paramsClose); {so close the file)

<··---------...)

This function requires three parameters: a GS/OS
string for the pathname of the file I want to load. a
variable handle parameter. and a variable longint pa
rameter. If all goes well. the function will return true.
the handle will be a handle to the memoty block
assigned to the file, and the longint parameter will
contain the file length.

Of course. I could load a file using standard Pascal I/0
statements. but it's usually a lot faster to make direct
calls to the operating system. For each GS I OS call, I set
up an appropriate parameter block and then make the
call. You'll notice that I set up the close parameter block
right after opening the file. That's so if I get an error later
on, we can easily close the file on the way out.

Reading a file with GS/OS is really vety straight for
ward. I open the file, get the EOF to find out how many
bytes to read, call New Handle to allocate memoty for the
file, read the file into the space the memoty manager
gave us. and then close the file.

Data in the APF files

OK, I can get the file into memoty. but what data is
stored in the APF file and how do I get at it? APF file data
is stored in variable length blocks. The first thing in
each block is a longint that specifies how long that block
is (including the length longint itself). The length is
followed by a string with the name of the block. This
string is a ordinaty Pascal string that starts with a
length byte.

The picture, if there is one, is stored in a block called
"MAIN". Apple has also defined blocks for patterns
("PATS") , palettes ("PALE'ITES"), and document draw
ing patterns ("SCIB"). and applications can define other
blocks for their own uses. Notice that there doesn't have
to be a MAIN block in a legal APF file, but it will be there
if the file contains a picture. To load the picture, I need
to find the MAIN block and extract the picture data from
it.

In order to make it easy for us to manipulate the data in
our Pascal program. I can extract the information from
the file I've loaded and store the result in a Pascal data
structure. First, I need to define a data type that will
hold all the necessaty information.

type PicRecord =
record

ImageHandle handle;
MasterMode : integer;
PixelsPerScanLine integer ;
NumScanLines : integer ;
LineSCB : array[0 . . Maxline] of integer;
NumPalettes : integer;
Palette : array[0 .. 15] of ColorTable;

end ;

Let's take a look at each of the fields in this record.

ImageHandle is a handle to a block of memoty that
contains the actual pixel image. The pixel image is
compressed in the MAIN block of the APF file. so our
program will need to allocate memoty for the uncom
pressed image and then unpack the image into this
space. But, the image by itself isn't enough: I need the
rest of the information in the PicRecord so I can display
it properly.

MasterMode tells us what the global mode of the picture
is. Normally, this will be either $00 (320 mode) or $80
(640 mode). I need to pass this value to the SetMaster
SCB call before displaying the picture.

PixelsPerScanLine is the number of pixels to display on
each scan line. Please note that this is the width of the
picture and not the width of the screen. A picture in an
APF file can be wider or narrower than the screen. A
picture with 640 pixels per scan line could be a 640
mode picture, but it could also be a 320 mode picture
that's two screens wide.

NumScanLines is the height of the picture. As with the
width of the picture. any value is possible. The picture

may be taller or shorter than the 200 scan lines that can
be displayed on the screen.

Each scan line has a Scan line Control Byte (SCB)
associated with it. This byte specifies things about how
that scan line should be displayed. This includes the
mode, interrupt status, fill mode status, and which
color table to use. The array used to store the SCBs for
the picture really should be dimensioned (O .. NumScan
Lines- 1). Unfortunately, I don't know what NumScan
Lines is going to be and Pascal doesn't support dynamic
dimensioning of arrays. The best I can do is size the
array large enough to handle anything we are apt to
encounter by setting an appropriately large value for the
constant MaxLine.

NumPalettes is the number of palettes that have been
saved with the picture. The APF file type doesn't put any
restriction on this number. but I can normally expect it
to be between 1 and 16.

Finally, I have an array of color tables. As with the SCB
array, this should be dimensioned (O .. NumPalettes- 1).
However, since the current hardware only supports 16
palettes, it should be safe for us to use a [0 .. 15) array.

Extracting the Data

Now that I know what I'm looking for, let's go get it.
Listing 2 is a Pascal function that will load an APF file
(using the function discussed earlier). extract the data
for our PicRecord, and unpack the image.

<• LISTING 2

function LoadAPF(thePathName : GSString2SS;

type

var

VAR thePic:PicRecord) : boolean;

(This function loads the APF graphic)
(specified by the GSOS string .)
(If successful, true is returned and)
(all fields of the PicRecord are set .)

longintPtr "'longint ;

myBufferHndl : Handle;
i 'j.
PixelsPerByte.
bytesDone,
srcSize.
dstSize integer;
srcBuffer,
dstBuffer ptr;
1 ines ize.
pics ize,

begin

address,
EndAddress.
size,
length,
offset
kind

longint;
str2SS;

LoadAPF : = false ;

(load the file and find the buffer)

if LoadFile(thePathName.
myBufferHndl,
size) then begin

address : = longint(myBufferHndl"') ;
EndAddress ·= address + size ;

(find the MAIN block)

repeat

length : = longintPtr(address)"';
offset := 4 ;
kind : = StringPtr(address +offset)";
if kind <> "MAIN"

then address : = address + length;

unt i 1 (k i nd = "MAIN")
or (address >= endAddress) ;

if kind <> "MAIN" then begin
DisposeHandle(myBufferHndl);
exit(LoadAPF) ;
end;

(read the picture data)

with thePic do begin

offset := S;
MasterMode : = intPtr(address +offset)";

if BAnd(MasterMode,$80) = 0
then PixelsPerByte 2
else PixelsPerByte 4 ;

offset := 11;
PixelsPerScanLine : =

intPtr(address + offset)" ;

offset := 13;

(320 mode)
(640 mode)

NumPalettes := intPtr(address + offset) " ;

offset : = 15;
if (NumPalettes > 0) then beg in

for i : = 0 to NumPalettes-1 do begin
Palette [i] :=

ColorlablePtr(address + offset)" ;
offset : = offset + 32 ;

end ; (for)
end; (if)

NumScanLines : = intPtr(address + offset)";

{get memory for the pixel image)

LineSize := PixelsPerScanLine
div PixelsPerByte;

if LineSize mod 8 <> 0 then
LineSize := LineSize

+ 8
- (LineSize mod 8);

PicSize : = NumScanLines * LineSize;

ImageHandle := NewHandle(PicSize,
myMemoryiD,
attrlocked,
ni 1);

theError := ToolErr;
if theError <> noError then begin

ReportError(theError);
DisposeHandle(myBufferHndl);
exit(LoadAPF);
end;

{unpack the picture)

j := NumScanLines - 1;
if j > Maxline then j := Maxl ine;
offset := offset + 2;

srcBuffer := ptr(address
+ offset
+ (4 * NumScanLines));

dstBuffer := ImageHandleA;

for i := 0 to j do begin
srcSize := intPtr(address + offset)A;
L i neSCB [i] : =

intPtr(address + offset + 2)A;
dstSize := LineSize;
bytesDone := UnPackBytes(srcBuffer,

srcSize,
dstBuffer,
dstS i ze);

srcBuffer :=

ptr(longint(srcBuffer) + bytesdone);
offset : = offset + 4;

end; {for)
end; 6u i th)

LoadAPF := true;
DisposeHandle(myBufferHndl);

end;

end;

{* *)

After the file is loaded, I extract the address from the
handle and save it as a longint variable to use for pointer
math. It is often said that pointer math is difficult in
Pascal, but it isn't that bad if you save the address as a
longint and then typecast it to the appropriate pointer

type when you need to use it as a pointer.

The first thing I need to do is find the MAIN block.
check the name of the block and if it isn't "MAIN". I add
the block length to the address and try again. I repeat
this until we either find the MAIN block or reach the end
of the file.

Notice the way that the string is assigned to the Pascal
string variable 'kind'. This is an example of the way that
data is accessed throughout this routine.

kind := StringPtr(address + offset)A;

Remember that address is a longint that is equal to the
address of the block in memory and that the name
string (kind) comes right after a longint (4 byte) variable.
To read the kind string, I need to look 4 bytes into the
block. In other words. this string is located at an offset
of 4 into the block. If I add the offset of the data to the
address ofthe block, I get the address ofthe data. Then
I can typecast this value into a pointer type that
matches the type of data that will be found at that
location (in this case, a Stringptr). To get the actual
data, I dereference the pointer by adding a " and assign
the result to our variable.

If I locate a MAIN block. I use this same approach to read
the information in the block. First, at an offset of9. I find
the MasterMode: I find out which mode the picture is
in by testing bit 7 of the MasterMode. This tells us how
many pixels will be stored in each byte of the pixel

. image. I will need to know this later, so I stick the
appropriate value in the PixelsPerByte variable. Next,
I find the PixelsPerScanLine followed by NumPalettes.
The palettes are stored right after NumPalettes. Each
color table uses 32 bytes. so I increment offset by 32 for
each palette in the file. NumScanLines will be found
right after the palettes.

I'm just about ready to unpack the picture. so I had
better allocate some memory for the image. The amount
of memory that I need is the number of scan lines times
the number of bytes in each scan line. I can get the
number of bytes in a scan line by dividing PixelsPer
ScanLine by PixelsPerByte. Well, this almost works. It
might not come out even and, also, some of the toolbox
routines require that the number of bytes in a scan line
be evenly divisible by 8 (LineSize mod 8 must equal
zero), so I have to adjust the LineSize by rounding up to
the next value that is divisible by 8.

Once I've allocated the memory. I'm ready to unpack the
picture. There are two things left in our MAIN block: a
scan line directory and the packed scan lines. The scan
line directory has two entries for each scan line, the
number of bytes to unpack and the scan line control
byte.

I will use the same 'address + offset' approach that I
have been using all along to read the scan line directory
and set up another pointer (srcBuffer) to the packed
scan lines. Since address + offset currently points to the
start of the scan line directory and each directory entry
is 4 bytes, address + offset + (4 • NumScanLines) will
point to the start of the packed data.

I unpack the image by feeding each scan line to the
toolbox UnPackBytes routine. This routine requires 4
parameters. SrcBuffer is the pointer to the packed scan
line. SrcSize is the number of bytes to unpack and I can
get this from the scan line directory. DstBuffer is a
pointer to the memory I've allocated for the image. The
toolbox automatically updates this pointer for us each
time UnPackBytes is called, so it will always point at the
spot where the next line goes. DstSize is the size of the
destination space. I could set this to the full size of the
unpacked image and the toolbox will update it for us on
each call. The only problem is that it's an integer sized
variable and it's at least theoretically possible for an
APF picture to be larger than that. I can get around this
by setting it to the line size for each line that I unpack.
Each time I call UnPackBytes. I use the returned value
to update our srcBuffer pointer.

Each time through the loop. I grab the SCB for the line
and put it into our array. Since I don't want to try and
store more data than our array will hold, I limit the
number of lines that I unpack to the MaxLine constant
that I used to dimension the array.

After I've finished unpacking the picture, I call Dispose
Handle to deallocate the buffer that I've been using for
the APF file. I don't need the APF file image that I loaded
from the disk any more, since I have the unpacked
image and all the data is in our PicRecord.

Displaying the Picture

At this point. I have a picture image and all the
information needed to display it properly somewhere in
RAM. but since you probably actually want to look at the
picture, I'm not done yet.

Listing 3 includes some procedures that demonstrate
one way to draw pictures from a desktop program.
ShowPic sets things up and then calls DrawPic to
actually draw the picture to the screen. ClosePic will
return us to the normal desktop display.

LISTING 3 •)

procedure DrawPic(thePic PicRecord;
srcLoc Loclnfo;
srcRect : rect);

var i ,j integer;

begin

(set up the SCBs for screen to correspond)
{to the picture scan 1 ines being displayed.)

j := srcRect.vl ;
for i := 0 to 199 do begin

SetSCB (i • theP i c . 1 i neSCB [j]) ;
j := j + l;
end;

{ and tben copy the display rect)
{to the current port.)

PPToPort(@srcLoc . srcRect.0.0.0);

end;

procedure ShowPic(myPic : PicRecord;
VAR PicLoc : Loclnfo ;
VAR DisplayRect : rect;
VAR PicPort : grafPort);

var i. N. myMode integer;

begin

8);

{ set up a Loclnfo record)

with PicLoc do begin
portSCB := myPic.MasterMode;
PtrToPixlmage : = myPic.ImageHandleA;
if BAnd(myPic.MasterMode.$80) = 0

then N := 2 else N : = 4;
width : = myPic .PixelsPerScanLine div N;
if width mod 8 <> 0

then width : = width + 8 - (width mod

boundsRect.hl := 0;
boundsRect.vl : = 0;
boundsRect.h2 : = myPic.PixelsPerScanLine;
boundsRect.v2 : = myPic.NumScanLines;
end ;

{ clear the desk)

HideMenuBar;

HideCursor;

(get a port to display the picture.)
(first set the master SCB)
(and then open a port in the new mode.)

SetMasterSCB(myPic.MasterMode);
OpenPort(@PicPort);

(adjust the color tables for the picture)

if myPic.NumPalettes > 0 then
for i := 0 to myPic.NumPalettes - 1 do

SetColorTable(i,myPic.Palette[i])
else begin

initColorTable(myPic.Palette[0]);
SetColorTable(0,myPic.Palette[0]);

end;

(set up a rectangle to display as much)
(of the picture as possible .)

if N = 2 then myMode := 320 else myMode :=
640;

with DisplayRect do begin
hl := 0;
vl := 0;
if PicLoc.boundsRect . h2 > myMode

then h2 := myMode
else h2 := PicLoc.boundsRect.h2;

if PicLoc.boundsRect.v2 > 200
then v2 := 200
else v2 := PicLoc.boundsRect.v2;

end;

(and then show the picture)

DrawPic(myPic,PicLoc,DisplayRect);
PicShowing := true;

end;

<·---------...)
procedure ClosePic(VAR PicPort

var StdColors : ColorTable;

begin

(close the display port)

SetPort(WindOnePtr);
ClosePort(@PicPort);

(set up for 640 mode)

SetMasterSCB($80);
SetAllSCBs($80);

grafPort);

(restore the standard color table)

initColorTable(StdColors) ;
SetColorTable(0,StdColors) ;

(show my stuff and redraw the desktop)

ShowMenuBar;
ShowCursor;
ShowWindow(WindOnePtr);
SelectWindow(WindOnePtr);
RefreshDesktop(nil);
PicShowing : = false;

end;

(+ +)

Show Pic uses the information in our PicRecord to set up
a Locinfo record that I can use with QuickDraw II. Once
again, I have to be careful that the width in bytes is
divisible by 8; otherwise, this should be fairly straight
forward.

Since I'm going to use the full screen for the picture. I
can avoid some of the complications involved with a full
mode change. First, I clear off the desktop. I close any
open windows before calling the procedure, so I only
need to get rid of the menu bar and the cursor. Next, I
feed our picture's MasterMode to SetMasterSCB and
then call OpenPort to get a full screen sized GrafPort
that matches the picture's mode. OpenPort sets things
up based on the MasterSCB, so I'll either get a 320 or
640 port depending on the MasterMode in our
PicRecord.

I need to set the palettes to those in our PicRecord before
I draw the picture. The SetColo:r'Table call in a simple
for loop will do the job. In the exceedingly rare, but legal,
event of anAPF file with zero palettes. I'll use a standard
color table.

Before I can use PProPort to copy the picture into our
new port I need to define the source rectangle. I want
to display as much of the picture as possible, so the
rectangle's dimensions will either match the screen's
dimensions or picture's dimensions, whichever are
smaller. I pass this rectangle to DrawPic which draws
the picture on the screen. Finally, I set a global flag so
that other routines in the program to tell that a picture
is being displayed.

DrawPic sets the SCBs for the screen to correspond to
the SCBs for the lines of the picture and then calls
PPfoPort to copy the image to the screen. I've separated
this routine from the Show Pic procedure to make it easy
to scroll the picture. To see other parts of the picture,
all I need to do is offset the display rectangle and call
DrawPic again.

ClosePic starts out by resetting the current port (I've

used a global window pointer in this example) and then
closing the picture's port. I need to set some other port
first because closing the current port is a no-no. Next.
I set the MasterSCB and all line SCBs back to the
program's mode. Then I can restore the default color
table, make all our desktop stuff visible again, and
redraw the desktop.

Modifications and Improvements

There you have it, Apple Preferred Format pictures that
will support just about anything that the Apple II GS
can display. I went through a lot of contortions to get
the picture on the screen. but I wanted to keep these

Insecticide
• Them's The BRKs, our article on 8-bit relocation,
contained two errors. If you actually tried to as
semble the code, you noticed that Merlin threw up
its hands when it encountered the label ":proc" in
lines 82, 87, 112. and 116. Replace ":proc" with
"RIR_PROC" and the problem will go away. There
were also errors in the RIR_DINS routine which
caused it to hang; here is a corrected version:

RTR_DINS php
ph a
brk
lda RTR_OLDB
ph a
brk
lda RTR_OLDB+l
sta $3Fl
pla
sta $3F0
pla
plp
rts

The two corrections above were included on last
month's 8/16 disk. Dave Lyons at Apple also
pointed out that interrupts can wreak havoc with
the RIR routine, particularly the code which figures
out its own runtime address. If an interrupt occurs
after the RfS at $FF58 is executed. but before the

routines as general as possible and performance is still
very acceptable. On my system (a Transwarped GS with
a 60 mb SCSI hard drive). these routines will load,
interpret. unpack, and display a screen sized picture in
just over one second.

Still, there are many opportunities to modify and im
prove on this code. For one thing, I designed the
PicRecord to help explain the contents theAPF file. This
is probably not the most efficient way to organize and
store the data in your program. For example, you might
want to set up a Loclnfo record and store that instead
of some of the more basic data. Also, there are many
places that things can be simplified if you only need to
deal with screen sized images or can put other restric
tions on the pictures.

code which adjusts the stack pointer back downard
is executed. the stack data the routine uses to
calculate its runtime address will be corrupted. To
avoid this, insert a SEI after line 19. To be safe. we
should probably disable interrupts in the actual
BRK handling code itself. as well; inserting a SEI
after line 64 should do the trick. (In neither situ
ation do we need to re-enable interrupts. since the
existing code already takes care of saving and
restoring the processor status register, thus doing
that for us.)

• In David Guager's Hardware Hacker column of
last month, our rendition ofDavid's diagrams didn't
tum out quite right. In Figure 1, the ground wire
should go into the game port immediately above the
number 3. The 5v line should line up with the
number 2. Furthermore, in line 320 of the Biofeed
back program listing, there should be a colon be
tween the HTAB 11 and the PRINT statement.

• .~ T~he ZBas1·c Zealot b.. • ~-~-~~ ~~~~~~~ ~ ~ ~L. -...,;;z;g;;;~-----.:;:......----~r ~·~ • ·~ ~~~~~~~~m~-.-

More MLI Madness & Working with Words
by Ross W. Lambert, Editor

I've spent a goodly amount of time over the last few
weeks doing two things: 1) helping some folks deal with
the ProDOS Machine Language Interlace from ZBasic,
and 2) playing with and adding to Chet Day's Shem the
Penman's Guide to Interactive Fiction. Both duties have
inspired me to explain a few things about each this
month.

ZBasic2MLI

First, the ProD OS MLI to ZBasic connection... a grasp
of the big picture will really help.

Here's a simple rule for you: everybody doing file IIO
under ProD OS 8 has to.access the MLI. Everybody. This
means assembly language programs, ZBasic programs,
Aztec C programs, MicolAdvanced Basic programs, and
even Applesoft programs via BASIC. SYSTEM. The syn
tax and available commands differ in each environment
only because ZBasic and the gang provide a sort of
custom interlace between you and the MLI. But rest
assured that, at the machine code level, they are each
doing the same sorts of things whenever they are talking
to ProDOS 8. This same principle applies to 16 bit
software, too, as Mike Westerfield indirectly pointed out
in his article this month. At the machine code level, a
GSIOS call is a GSIOS call is a GSIOS call ...

By providing us with the location of ZBasic's built-in
parameter blocks and subroutines for MLI calls, lan
guage wiz Greg Branche (now with Apple, Inc.) gave us
the ability to stick our toes into running water. That is,
we can set up ZBasic's internal routines so that it calls
the MLI for us, and in exactly the same manner that a
standard ZBasic file I I 0 statement does. He also saved
us a few bytes in that we don't need to reserve space
elsewhere for a place to put the information passed to
and from the MLI (such a data stash is called a parame
ter block).

Since the MLI is being accessed via ZBasic internal
routines, ZBasic itself does not know or care who is
making the call. This is important in its implications.

For example, if I try to OPEN a file via the MLI (instead
of the standard ZBasic OPEN) and the MLI returns an
error, ZBasic will do what it always does. That is, it will
fill in the ERROR variable with the error number. If I
want to, I can let ZBasic handle the error. On page D-
19 of the ProDOS appendix in the manual, Greg pro
vided us with machine code that turns over error
handling to ZBasic after an MLI call. You can mess with
that if you want, but I find it much more straightforward
to handle errors myself. It's just mo' betta all the way
around, I think, especially if ERROR will tell me what
has happened (which it does).

Skip This

If you're already an assembly language junkie, skip this
section. From the drift of my phone calls of late. there
are enough questions about accessing the MLI that a
quick once over here might help a few of you.

And even if assembly language makes you nauseous,
read on. There's surprisingly little assembly involved. In
fact, you don't even need an assembler to call the MLI
with ZBasic!

Because we're using some machine code living inside of
ZBasic to access the MLI, we don't need to do as much
as most folks do when making an MLI call. In a nutshell,
all we have to do is POKE the number of parameters
required for the call into $1FOO, and then POKE the
parameters themselves into the appropriate bytes
thereafter (i.e. $1F01, $1F02, etc.)

A common source of boo boos at this stage is losing
track of what goes where. To get the MLI to OPEN a file
for us, for example, the manuals and books (The ProDOS
8 Technical Reference Manual and Exploring GS I OS and
ProDOS 8) say that there are three parameters total. Two
we give (pass) to ProDOS and one it gives back to us.
Thus we must:

POKE &1F00,3 :REM POKE • of parms at $1F00

The first parm we must pass is a pointer to the file name.
That's easy with V ARJYfR. Like so:

POKE WORD &1F01, VARPTR (FILE$)

The second parm is the address of the 1K I/0 buffer
ProDOS needs for a workspace. For this we could hunt
around for 1K within our program or data space, but
Greg was kind enough to tell us where ZBasic puts its
own I/0 buffers so that we could share them. As long as
you don't overwrite the buffer of an open file, there is no
problem with using ZBasic's buffers. You can figure out
where a buffer is by multiplying 1K (1024) times the
number of open files and subtracting that from $ACOO.
It's easier than it sounds ...

BUFFER% = &AC00 - (FNUM * &400)
POKE WORD &1F03, BUFFER%

Note that. on 8 bit Apples. memory addresses are a word
(16 bits) long. so I used POKE WORD instead of POKE.
Also note that you have to watch out for how you've
configured ZBasic. Ifyou have told the compiler you're
only going to have one file open at a time, you can only
have one file open at time. If you put a buffer 1K below
the first buffer you'll be trashing your own variables.

This is unpleasantness.

To actually make the call to the MLI. you need a
MACHLG statement that looks like this:

MACHLG &A9,MLICa11Num, &20, &0865

In our case. the MLI call number for the OPEN com
mand is $C8. Put that in for MLICallNum and by
George. you've got it. That's all there is to it.

Put that assembler away!

To review, then, there are three basic steps involved in
putting the MLI to work for you in ZBasic:

• 1: POKE the number of parameters for the call you
want to execute at $1FOO.

• 2: POKE the rest of the parameters for any given call
in the appropriate spots from $1 FO 1 on.

• 3: Insert a MACHLG &AS, MLI Ca 1 1 Num, &20, &0865
right into your code.

Take a gander at Listing 1. The code there purposely
sets up an error condition with an illegal file name. By
running the beast you can see that, just as I promised,
ZBasic 4. 21 fills in ERROR and tells you that something
is rotten in Denmark.

Immediately after that, the program takes a real file that
is online (whose name you have to insert into the source
first!) and then gets the file length using two different
methods. In the first situation I accessed the MLI
directly in the same manner I just described. In the
second, I told ZBasic to go OPEN the file, give it a record
length of one byte. and then tell me how many records
there are. This effectively returns the file length. Be
cause ZBasic I/0 routines are doing some calculations
while this is going on (so that we can use fixed length
records). the direct-connect method via the MLI is
significantly faster. Try building a loop that does 100
iterations of each method and then time them if you
don't believe me.

Now all you've got to do is go out and buy Gary Little's
Exploring GS/OS and ProDOS 8 so you can make all
sorts of off-the-wall MLI calls. For fun, try changing the
filetypes and aux filetypes of all the files on your hard
drive. Better yet. do the same thing on original copies of
AppleWorks.

Hey man. this is the April Fool's edition, remember?

Shem on You

As I mentioned earlier, I've been writing some adventure
games lately and have been looking for ways to add
intelligence to the natural language interpretation abili
ties of my programs. The code in Listings 2 and 3 are the
fruits of my labors (and research - they're adaptations
from the Microsoft QuickBasic Toolbox}.

An aside - many of us in Appledom forget that the
(shudder) MS-DOS world is absolutely gargantuan in
terms of sheer numbers of users and programmers.
There is some good stuff going on over there in the
software arena which we can benefit from if we put aside
our biases for a few minutes. Just be sure and pick 'em
up again! The hardware is really yucky.

Back at the ranch, natural language processing is an
incredibly detailed subject and the subject of more than
one doctoral thesis. In its fullest and purest form it is
way over my head.

But I know what I want my software to do: it should be
able to discem the meaning of as many common
English phrases and directives as possible. Even with
today's high speed CPUs, going "brute force" through
every possible combination of letters is ridiculously
slow. Therefore my program must be able to do some
word parsing and intelligent guessing.

Here's how I did it (with apologies to all you computer
science majors) ...

For my purposes (and most others). the ability to pick
out the individual words from a string typed at the
keyboard is the first step towards figuring out the
meaning behind the command.

In an (English) adventure game setting, the first word
typed is usually the verb - "Drop the phasor", for
example. The second word is often an article ("a", "an",
or "the"). and the third word is the direct object - the
object or person we should do something to. With some
decent word parsing code we can yank out each word
from the command line and compare it against a list of
logical responses. acting accordingly if a match is
found.

By the way, recent advances in adventure game devel
opment have greatly improved the command line ("you
type it") interface, providing menus and mouse support
for quick direction changes, etc. Nevertheless, I still
think the best pieces of software let me "talk" to the
computer also, making creative decisions on the fly via
the keyboard. It's a tough job, and not many programs
do it well.

FN ParseWord (Listing 2) can be a decent first step on
your parsing path. The function makes good use of
ZBasic's INS1R state~ent, scanning the target string
for the first instance of a "seperator" character. In most
instances, the seperator is a space. For added flexibility,
however, you can define as many seperators as you
want. Thus spaces, hyphens, backslashes, and just
about anything else can be used to define word breaks.

Because all variables are global inZBasic. it is useful in
this function to "officially" retum one string - the first
word found- in TheWord$, and also the rest ofthe string
-i.e. everything to the right ofthe first word- in Source$.
In this manner, repeated calls to the function can rip
apart any string into its component words.

Listing 3 is a beast of a different color. There are times,

when dealing with human language, that you need to
evaluate a set of strings and find out which one is closest
to something your program can understand.

FN BestMatchStr scans the INDEX$ array and com
pares the strings within it to a Target$. For added
flexibility, you can pass the function the array element
to start with, the number of comparisons to make, and
whether or not to check for case. If the parm, CaseSen
sitive is boolean true (i.e. equal to -1). then the function
will not count "roscoe" to be as close a match to "Ross"
as "Roscoe".

The actual string comparison code is rather interesting,
I think. The routine works by creating a score for each
element in the comparison array. The score is based on
both the number of character matches and the length
of each match.

In such a "length weighted" scheme. if the target string
was "CAT". "CAR" would have a higher score than "KTA"
even though they each matched on two characters. This
is because CAR matched with two consecutive charac
ters.

A caveat

Even though FN BestMatchStr will tell you which string
is the closest to a target string, it will not give any
indication if the closest match is "close enough". You
would probably have to determine a "minimum match
ing score". a process that is best left to your individual
applications.

Besides, I am out of space and time (oooh, broke in four
dimensions!). Until next time, then, remember:

1) Never tell a telephone operator that you· d like to CALL
-958.

2) Never POKE anything you ought not to in a parameter
block (ouch!).

and

3) Never underestimate the power of BASIC.

listing 1 ZBasic ProDOS 8 MLI Calls

REM
REM
REM
REM
REM
REM
REM

ZBasic ProDOS 8 MLI Stuff
by Ross ~. Lambert. Editor
This baby~ public domain

DIM 65 FILE$

REM
REM Define Long Functions
REM
REM

LONG FN OPEN_FILE (FILE$.FNUM)
BUFFER% = &AC00 - (FNUM • &400) :REM get 1K

I/0 buffer for ProDOS from Z
POKE &1F00.3 :REM three

parms for this call
POKE ~ORO &1F01. VARPTR (FILE$) :REM pass

pointer to filename
POKE ~ORO &1F03. BUFFER% :REM tell

ProOOS where buffer is
MACHLG &AS. &C8. &20. &0865 :REM Open

the file
REF_NUM =PEEK (&1F05) :REM Get

ProDOS reference number
END FN = REF_NUM

LONG FN GET_EOF! (REF_NUM)
POKE &1F00,2 :REM two parms for this call
POKE &1F0L REF _NUM
MACHLG &AS. &Dl. &20. &0865 :REM make the call
FILE_LEN! = PEEK ~ORO (&1F02) + PEEK (&1F04)

• 65536.0 : REM length of file
END FN = FILE_LEN!

-- Main Program
REM
REM
REM .. ----
REM Intentionally create an error to see what

ZBasic does

FILE$ = "12345"
RefNum = FN OPEN_FILE(FILE$.1)
IF ERROR <> 0 THEN PRINT "You boogered that

up!" : INPUT R$
ERROR = 0

FILE$ = "Your File Here" : REM'' Put the name
of an available file here''

RefNum = FN OPEN_FILE(FILE$.1)
IF ERROR <> 0 THEN GOTO "Fatal Error"

FileLen! = FN GET_EOF! (RefNum)
CLOSE

PRINT "The length of " ; FILE$; " is: " ; FileLen! ; "
bytes."

REM If we open with a 1 byte record length. we
can use LOF to calculate

REM the number of records (which is the number
of bytes in this case)

OPEN "I" , 1.FILE$.1

PRINT "According to ZBasic. the file length is:
"; LOF (1)

CLOSE

END

"Fatal Error"
PRINT ERRMSG$(ERROR)
STOP

Listing 2: FN Parse~ord

REM
REM
REM FN Parse~ord Example
REM by Ross ~. Lambert. Editor
REM Copyright (C) 1S8S-S0
REM Most Rights Reserved
REM
REM

DIM 2 Char$,0ldChar$.20 Sep$.80 TheWord$: REM
lengths are pretty arbitrary

LONG FN ParseWord$ (Source$.Sep$)
The~ord$
SepLen =LEN (Sep$) : IF SepLen=0 THEN "ExitFN"
SubLen = LEN (Source$) : REM grab length of

subject string
IF SubLen = 0 THEN "ExitFN"
FOR Char = 1 TO SubLen : REM loop through each

character
Char$= MIO$(Source$.Char.l)

REM we got us a word break
LONG IF INSTR(1.Sep$,Char$) AND Char$ <>

OldChar$
IF Char= 1 THEN "NextChar" : REM ignore a

leading space
TheWord$ = LEFT$(Source$. Char-1)
Source$ = RIGHT$(Source$.Sublen-Char)
GOTO "ExitFN"

END IF

"NextChar"
OldChar$ = Char$

NEXT :REM get next char in source string
"ExitFN"

IF TheWord$ = THEN TheWord$=Source$:Source$
= 1111

END FN = The~ord$:REM note Source$ holds rest
of str

REM
REM
REM

.
Main Program

TheStr$ = "Hit the troll with the rock .": REM
typical adventure game string

Sep$ = CHR$(32):REM space only separator here
Source$ TheStr$:REM save a copy of the

original str!

REM loop through and print the first word on the
REM left and the remaining string on the right
REM until we've parsed every word.

DO
Count = Count + 1
TheWord$ = FN ParseWord$ (Source$,Sep$)
PRINT TheWord$,Source$

UNTIL LEN (Source$) = 0

INPUT R$
END

Listing 3: FN BestMatchStr

REM·····
REM
REM FN BestMatchStr Example
REM by Ross W. Lambert, Editor
REM Copyright (C) 1S8S-S0
REM Most Rights Reserved
REM

REM ··-·

REM NOTE: Place the subject strings in the
REM INDEX$(X) array before calling the function.
REM
REM VARIABLES: Target$ - str others strive to be
REM WannaBe$ - the subject strings
REM NumComps- #of strings in INDEX$
REM CaseSensitive - if True, caps

different than lower case
REM StrScorel - HIGHEST score for

subject strings SO FAR
REM StrScore2 - Pointer to HIGHEST

RATED STRING .
REM StrScoreX - Running total of

current comparison .
REM TargetLen - length of target str

REM ==

LONG FNBestMatchStr(Target$,NumComps , CaseSensitive
TargetLen = LEN(Target$)
StrScorel = 0 :REM ¥ou need this if you call

multiple times
FOR X = 0 TO NumComps-1

LONG IF NOT CaseSensitive

WannaBe$
XELSE

WannaBe$
END IF
StrScoreX = 0

UCASE$(INDEX$(X))

INDEX$(X)

FOR I = 1 TO TargetLen
FOR J = 1 TO TargetLen - I + 1

Temp$= MID$(Target$,J,I)
LONG IF INSTR (l,WannaBe$,Temp$)

StrScoreX = StrScoreX + (2~I)

END IF
NEXT

NEXT
IF StrScoreX > StrScorel THEN StrScore1

StrScoreX : StrScore2 = X
NEXT

END FN = StrScore2
REM Returns • of string with highest score

REM
REM
REM

Main Program
M

CLEAR 2000 :REM For INDEX$ array

INDEX$(0) "This is a real test . "
INDEX$(1) "This is the first test . "

INDEX$(2) = "This is a very real test . "
INDEX$(3) "This is the third test . r
INDEX$(4) "is is is is is is is is
is" : REM check for weirdness
Target$ = "This is my real test. "

PRINT "The candidate strings : "
PRINT
FOR X 0 TO 4

PRINT INDEX$(X)
NEXT
PRINT
PRINT "The target:"
PRINT Target$

is is is

BestStr FN BestMatchStr (Target$,5,-1) :REM
compare 5 strings, check case

PRINT
PRINT "And the winner is string ";BestStr
PRINT INDEX$(BestStr)

INPUT R$: REM pause until CR
END

Whenever you place an order
with an Apple II hardware or
software company, tell them
you saw it in 8/16 (whether
they're advertisers or not -
hehehe).

is

• • "" • • • • • • • • • • • • • • • • • • .._..d ~OrcaStratt·ons b... • . ._._.
.. ~~ lllr·~lrlrlr•. -~~ ~r• lrlr. lr•, _ -....,~~----~,.....___.r m •• -~~~lrlr~~m

No Fits With Inits: Writing an Init Front
High Level Languages
By Mike Westerfield, The ByteWorks

Editor: Mike undoubtedly needs no introduction, but tn
my typicaUy redundant manner I'll do it anyway: Mike
is the author of numerous popular programming environ
ments and languages for both 8 bit and 16 bit Apple II' s.
including the Orca assemblers, Orca C, and Orca Pascal.
His company, The ByteWorks, has also produced some
tnteresttng lesser known packages like BytePaint (a DHR
patnt and shape drawtng program), Voyager, and a neat
GS product I saw at the last AppleFest called "The
Talktng Storybook". Today's trivia: The ByteWorks
started namtng their products "Orca" -whatever because
their fzrst assembler, Orca/ M. was really "macro" spelled
backwards. And you thought Mike was into whales!

Don't Quit! Return!

The first kind of program most people learn to write is
either a stand-alone program that can be launched from
the Finder, or a shell program that runs from the APW
or ORCA shell. In either case, at the end ofthe program.
you use a Quit call to return to the Finder or shell. You
can also use an RfL to return to the shell (although not
the Finder). To keep things simple, though, compilers
exit using a Quit call, since that works with either type
of program.

There have always been programs that had to finish
with an RfL, though. The most common example of

At first, most ofthe folks delving into these comers of the
operating system were using assembly language. where
you can return any way you want, but recently we have
had more and more questions from people trying to
write these kinds of programs from Pascal and C. This
article explores how this is done. First, we will look at
how to return with an R1L from Pascal and C. With the
basics out of the way, we will write a short init in C.

RTLfrom C

When you compile a C program from ORCA/C. the
compiler creates two object files. called a root file and a
dot-a file. These files are sent to the linker, which turns
them into an executable program. The reason that there
are two files is tied up in the way partial compilation
works, but it turns out that it is very handy for our
purposes. The root file has the preamble code that
initializes the run-time environment for the compiled
functions, while the dot -a file has all of the functions you
wrote in C. A disassembly of the root file looks like this :

Listing 1: Standard ORCA/ C Root File

keep ccroot
mcopy ccroot . macros
case on

these are desk accessories, both classic desk accesso- ~_ROOT

rtes and new desk accessories. Compilers generally
start

have some sort of directive to help you create the special
code and headers that must be used with CDAs and
NDAs. There are several cases. though, that the compil-
ers do not handle. GS/OS lets you write programs
called startup files, or inits. These are called as GS/OS
boots, when you tum on your computer. For the most
part, an init works just like any other program. The
main difference is that you use an RfL to get back toGS I
OS. instead of a Quit call. CDevs, the modules called by
the new control panel, have the same requirement, as do
the programs called by HyperStudio.

ph2 •$2000 ask for 8K of stack space
jsl ~ _BWSTARTUP set compilr environ .
ph2 •~GLOBALSI-16 set data bank reg.
plb
plb
jsl ~c_STARTUP executePascal program

jsl main
jsl ~ c_SHUTDOWN

end

It is-_BWSTARfUP that does most of the work to set up
the environment. It allocates a stack for local variables
that is 8096 bytes long ($2000). starts up the memory
manager that is used by Pascal and C. and does a few
other housekeeping chores. You change the size of the
run-time stack by changing the value pushed at the
beginning of the subroutine. It then sets up the data
bank register, and calls -C_STARfUP. -C_STARfUP is
peculiar to the C language. This is where the command
line is read and parsed for later use by argc and argv,
and where C-specific initialization is done. The jsl to
main calls your main function. which is the entry point
to every C program. Finally, a call is made to
-C_SHUTDOWN. The last thing -C_SHUTDOWN does
is jump to -QUIT, the exit point for all high-level
languages. It is -QUIT that we need to change.

-QUIT is located in the run-time library, embedded at
the end of a segment that contains a number of global
variables used by the compiler and its run-time library.
Like all library subroutines, we can replace the one in
the standard library with one of our own by just using
the same name. The linker will use our substitute
routine in place of the library routine. The replacement
routine will use an rtl instead of a quit call. but this does
present one problem. You can quit from anywhere in a
program; GS I OS repairs the stack for itself. To do an rtl,
you have to make sure that the stack register is exactly
what it was when the program was called. The easiest
way to make sure this happens is to save the stack
register at the beginning of our root segment. To do that.
we will replace the root file created by the C compiler
with one of our own. Here's the replacement:

Listing 2: Modified ORCA/C Root File

keep ccroot
mcopy ccroot.macros
case on

-_ROOT start

tsc
sta
ph2
jsl
ph2
plb
plb
jsl
jsl
jsl
end

save entry stack value
>-QUITSTACK
•$2000 ask for SK stack space
- _BWSTARTUP set compiler environm.
a-GLOBALSI-16 set data bank reg

- c_STARTUP
main
-c_SHUTDOWN

execute Pascal prog

The only other step is to replace -QUIT with code that
restores the stack register to the value saved in

-QUITSTACK and returns with an RTL. The normal
shut-downprocess used by the compiler will do all of the
other clean-up, like disposing of our stack space, deal
locating any memory, and so forth. The complete
replacement subroutine, along with the global variables
that appear in the same module, is show below.

Listing 3:
Modified Library Subroutine With RTL

mcopy common.macros
11

• - _BWCommon- Global data for the compiler
•
11

•
- _BWCommon start

Misc. variables

'
-commandLine entry ; addr of the shell cmd 1 ine

ds 4
-EOFinput entry ; end of file flag for input

ds 2
-EOLNinput entry ; end of 1 ine flag for input

ds 2
ErrorOutput entry ;error output file variable

de a4'-Error0utputChar'
-ErrorOutputChar entry ;error output file buffer

ds 2
Input entry ;standard input file variable

de ~4'-InputChar'

-InputChar entry ;standard input file buffer
ds 2

-MinStack entry ; lowest resrved bnk zero addr
ds 2

Output entry ;standard output file variable
de a4'-outputChar'

-outputChar entry ;standard output file buffer
ds 2

-RealVal entry ;last real value returned by a fn
ds 10

-ThisFile entry ;ptr to current file variable
ds 4

-ToolError entry ;last error in a tool call
ds 2

-user_ID entry ;user ID
ds 2

ioFlag entry ; input output flag
ds 2

-stringList entry ;string buffer 1 ist
ds 4

Traceback variables

- ProcList entry ;traceback 1 ist head
ds 4

-LineNumber entry ; current 1 ine number
ds 2

-ProcName entry ; current procedure name
ds 12

Universal quit code

entry
ph a
jsl -MM_Init
ph2 >-user_ID

maining memory

;save the return code
;zero the memory mgr
;dispose of any re-

_DisposeAll ;allocated by mem mgr
plx ;restore return code
lda >-QuitStack;rest stack register
tcs
txa
rtl

-QuitStack entry
ds 2
end

;return to prog launcher

;S reg for quit

Putting all of this mess together into a program is easier
than it looks. The new version of-_BWCOMMON can
be appended right to the end of the C program with a
#append: the system is smart enough to figure out that
you changed languages, calling the compiler and as
sembler when appropriate. To try this out. we'll write
the famous hello, world program so it does an rtl instead
of a quit. With the #append at the end, the program
looks like this:

Listing 4: Hello World from C

•pragma keep "test"

•include <types.h>
•include <misctool .h>
•include <stdio.h>

void main(void)

{
printf("Hello, world . \n");
)

•append "test.asm"

The assembly language file with - _BWCommon should
be called test.asm: if you change the name then you will,
of course, have to change the name on the #append
directive as well. The program is compiled with the
compile command.

Next, we need to replace the root file created by the C

compiler with our own version. To do that, assemble the
replacement root file. I named the file ccroot.asm: you
might want to do the same, to make it a bit easier to
follow the article. Assembling this file produces an
object file called ccroot.root. To replace the default r9ot
ffie. delete test. root (this is the name of the file created
by the C compiler). and rename ccroot.root to be
test.root. Finally, we link test.

This is, to put it mildly. a real mess to go through every
time you compile the program. To avoid the hassle. the
best thing to do is to encapsulate all of the commands
in a script file. Here's the one I used. Type in it just like
a program, then save it and set the language type to
EXEC. To create and run your program, just type the
name ofthe script file from the shell. (From PRIZM, you
can do this from any window. If you are in the shell
window, type the name of the script and press the
retum key. From some other window, you use the enter
key, instead of the retum key.)

Listing 5: Automating the Compile for C

compile test.cc
assemble ccroot.asm
delete test.root
rename ccroot.root test.root
1 ink test keep=test
test

Once Again, from Pascal

ORCA/Pascal uses the same run-time environment as
ORCA/C. Just like inC, the quit code is in-_BWCom
mon. The only difference is that Pascal doesn't have to
call language-specific routines to handle things like
argc and argv. Basically, then, the only dillerence
between creating a Pascal program that retums to the
launcher with an RTL and doing the same thing for C is
the code you put in the custom root file.

Here's the standard root file for a Pascal program. Right
below it is the modified version that stores the value of
the stack register for later use by the quit code.

Listing 6: Standard ORCA/Pascal Root File

keep pasroot
mcopy pasroot . macros

-_Root start

ph2 •$2000 ;ask for 8K of stack space
jsl
ph2
plb
plb

- _B~StartUp ; set up complr envir .
•-Globalsl-16 ; set data bank reg

jsl - _PasMain ; execute Pascal program
lda •0 ; return with no error
jml -ou it

program test(output);

begin
writeln("Hello, world . ");
end .

{$append "test . asm")

end The build script to automate the process of compiling
and linking the various parts is almost a direct copy of
the build script we used with ORCA/C.

Listing 7: Modified ORCA/Pascal Root File

keep pasroot
mcopy pasroot.macros

-_Root start

tsc ;save the entry stack value
sta >-QuitStack
ph2 •$2000 ; ask for 8K of stack space
jsl - _B~StartUp ;set complr envirment
ph2 •-Globalsl-16 ;set data bank reg
plb
plb
jsl - _PasMain ;execute Pascal prog
lda •0 ;return with no error
jml -Quit

end

A casual glance might make you try replacing the JML
to -Quit with an RfL, instead. but that is a bad idea. If
you take a closer look at-BWCommon. you will see that
the quit code also shuts down the memory manager.
and disposes of memory allocated by Pascal. Even if you
put this code in your root file. too. there is a problem.
Error exits from library subroutines are still going to
leave the program by jumping to -Quit. In other words,
stick with the method outlined. It will save you a world
of trouble.

Like C, Pascal has a compiler directive which can
append an assembly language file. A simple hello, world
program in Pascal, with the append to attach the
replacement for -BWCommon, looks like this.

Listing 8: Hello World from Pascal

($keep "test")

Listing 9:
Automating the Compile for Pascal

compile test.pas
assemble pasroot.asm
delete test.root
rename pasroot . root test.root
1 ink test keep=test
test

A Clock Init

I really wanted to include a short but indispensable init
as an example program. Instead, I settled for one that
is merely a conversation piece. The sample init shown
in Listing 1 sets up an interrupt handler that gets called
6 times a second. Each time it is called. it pokes the
current time onto the text screen. If you are using a
desktop application, you won't see a thing, but no harm
will be done, either, since the text screen is reserved by
the operating system. Any time you are using a \ext
program, though, you will see the time at the top-right
of your screen. As the screen scrolls. or new characters
are placed on the screen by the text application, the time
is written back to the original spot.

If you look at Listing 1, you will see that I renamed the
assembly language file that contains - _BWCommon.
You should either rename yours or make a copy. I
suppose you could change the #append directive, too,
but I prefer keeping all of the files for a program
together. so I made a copy of the file for this program.

I have used the clock with the text version of ORCA/M
and the ORCA/M editor with no problems. I have also

used it with several CDAs, again with no ill effects. In
general. there shouldn't be any. It is possible, though,
for a program to read the screen locations to get at
stored text, rather than using a separate text buffer. If
you have a program that does this, the time will be read
by the program instead of the characters it placed there.
I'm not aware of any Apple II programs that do this, but
I would be surprised if there isn't at least one of them out
there. If you run into a problem, of course, you can just
delete the init from your SYSTEM.SETUP folder.

As with the simpler examples, creating the program is
a bit involved. This is even more true with this init, since
the file type has to be changed to $B6. The script is
commented, so you should be able to follow it with no
problems.

Listing 10: Building the Clock

*Compile the clock
compile clock . cc

* Replace clock.root with the rtl startup
code
assemble ccroot.asm
delete clock.root
rename ccroot.root clock . root

* link the executable
link clock keep=clock

*make it a permanent startup file
filetype clock $86

* copy the program to the startup folder
copy -c clock 4/system .setup

There is one interesting point about the clock program
that I would like you to notice. The clock is an interrupt
driven program. Interrupt subroutines require a spe
cial header, and are called with 8 bit registers. The C
compiler can't deal with either of these issues on its
own, but a short assembly language patch handles the
job very nicely. The patch, called HeartBeatTask, is a
good example of when to use the mini-assembler built
into C. The code is very short, and since it is written in
C. you can move it from program to program, even if you
aren't using the full-blown ORCA/M assembler.

Listing 11: The Clock Init

I
I II I I I I I I I I I I I I I I I I II I I I I I I I I I I I I I I I I I I

...
"' Clock - screen clock ...
"' This program is an init . It is executed as
"' your computer boots. It installs a heartbeat
"' interrupt handler that writes the current
"' time to the top-right of the text screen .
...
"' By Mike Westerfield
...
"' Comp iled under ORCA/C 1.0 .
...
"' Source code released to the public domain .
"' The compiled code contains copyrighted
"' 1 ibrar ies from ORCA/C .
...
1111111111111111111111111111111111111 11 1111111111111111111111111/

•pragma keep "clock"

•include <types.h>
•include <m isctool .h >

I
I II I II

...
* DrawClock - Draw a clock ...
* This function writes the current time to the
* top right of the text screen. It does not
"' disturb the console drivers
111111111111111•11•1•111•11 1/

void DrawClock (void)

(
char "'ptr0, *ptr1; I* screen buffer pointers "'I
char time [20] ; I"' system time "'I

ReadAsci iTime(time); I* read the time "'I
ptr0 = (char *) 0x000424 ;1"'set up screen ptrs *I
ptr1 = (char "') 0x010424 ;
*ptr1++ = t i me~] ; I"' place time on screen "'I
*ptr0++ = time[10] ;
*ptr1++ time [11] ;
*ptr0++ time [12];
*ptr1 ++ time [13];
*ptr0++ time[14] ;
"'ptr1 time [15];
*ptr0 time [16];
)

I
I II I

...
"' HeartBeatTask - Heartbeat interrupt task
...
* This function implements interface required

• for a heartbeat interrupt handler . Every
• 1160th of a second, the system decrements
• count: . When the value reaches 0, the
• code that follows is executed. This code
• resets the timer and calls a normal C function
• to do the real work .
•
• Notes : Inits tend to be small, so I took a
• short-cut by using phk-plb to set the data
• bank. This sets the data bank to the value
• of the code bank, which works fine for the
• small memory model . If you are using the
• large memory model, though, you will need to
• reset the data bank to -GLOBALS, not
• to the code bank . The C startup code shows
• how to do this .
•
111 I 1111111111111111111111/

asm HeartBeatTask (void)

•define COUNT 10 I* heart beat counter *I

(
del 0 I* heartbt interrupt hdr •1

count: dew COUNT
dew 0xA55A

phb I* use our local data bank *I
phk
plb
php I* use long registers *I
rep •0x30
lda •COUNT I* reset task timer *I
sta count
jsl OrawClock I* call the C task *I
plp I* switch to short registers *I
plb I* return to the caller *I
rtl

)

•undef COUNT

I
I I I I I I I I II

main - main entry point •
•
•
•
•
•

The main function is called at system startup
time . It installs the heartbeat task and
returns .

11/

vo(i d rna i n (vo i d)

(
SetHeartBeat(HeartBeatTask);
)

•append ·clock . asm·

Call
Box.

The Toolbox
Programming

System

WYSIWYG?
(What You See Is What You Get)
Four powerful W¥SIW¥G editors slash program
ming time dramatically for Assembly . C. Pascal
and Applesoft BASIC programs. YESI . I said
Applesoft . CALL-BOX inc ludes the f1rst full func
tion Applesoft BASIC interface for the llgs toolbox
as well but let's talk about the editors first

• Image Editor .
Create Icons. Cursors. and Pixel 1mages 1n

e1ther 640 or 320 mode .

• Window Editor
Create Window templates with scroll bars. con
trols . etc . plus custom colors.

• Dialog Editor
Create Dialog templates using Radio buttons.
Check boxes. Line edit items, text in various
styles, etc .

• Menu Editor .
Create Menu templates w1th keypress equiva
lents. checks, diamonds. Font styles. etc

All editors output APW source code , Linkable
object code or resource files to make the best
match to your current development system. Every
thing is accessable from the CALL-BOX Editor
shell that includes these editors plus File utilities.
Configuration utilities, programmable application
launcher and the BASIC interface .

The CALL-BOX BASIC interface allows the Apple
soft programmer to use Super Hi-Res v1a Quick
draw II, desktops, menu bars . windows . ports.
fonts . dialog boxes. and the cursor linked task
master system in the llgs. This interface incor
porates automated calls to minimize the code
needed in your BASIC program and has added
Long Call, Long Poke, Long Peek . and super
array functions to bring Applesoft up to snuff
with the additional memory in your llgs .

All this plus a demo, sample code and bound
manuals. Fully GS/ OS V5.0 compatible and all in
one place for the first time everl

The CALL-BOX TPS $99.00
Add $4.50 shipping and handling
Foreign add $10.50.
Send check . money order , Visa or MasterCard

(714) 964-4298

Apple II Infinitum
[Editor's note: II Infinitum is a campaign coordinated by
Jerry Fellows to focus attention on the Apple II and to give
Apple unmistakable proof that there is still much interest
in the Apple II. Your letters to Apple and to the Wall Street
Journal can make a difference in the future of the Apple
II. The 8 I 16 editors fully support this campaign, just
because it makes a lot of sense. = Jerry K. =)

February 1, 1990

To the Members of the Apple II Community:

This year could mark a historic turning point for the
Apple II ... if you help. We are asking you to voice your
support for the Apple II. to convince Apple Computer
that the Apple II is worth further investment.

Despite all the rumors regarding its imminent death.
the Apple II remains with us. alive and improving. The
Apple II community has, in many respects. been thrust
backward into the days of semi-obscurity and grass
roots survival.. . however, Apple Computer is currently
revitalizing its Apple II marketing and development
strategies. With this effort comes the hope of a grand
rebirth for the Apple II platform.

II Infinitum is a letter-writing campaign encouraging
members of the Apple II community to speak out now!
We want you to write not only to John Sculley at Apple
Computer, Inc .. but also to the Wall Street Journal. We
hope that if the Journal receives enough letters. they
will be motivated to publish an article on our efforts.
This will allow us to then reach Apple stockholders. who
have the clout that we need to support our efforts.

In addition, we urge you to distribute this letter to other
members of the Apple II community. so that even more
voices will be added to this cause. Listed on the follow
ing page are some guidelines that we recommend using
when writing your letter. The addresses of John Sculley
and the Wall Street Journal, as well as others we
encourage you to contact. are listed after that.

Please take this opportunity to support the Apple II ...
only by combining our efforts can we achieve success.

Apple II Forever!
II Infinit urn

Recommended Guidelines:

• Keep your letter businesslike and to the point - no
more than one neatly typed or laser-printed page if
possible.
• Avoid form letters or petitions; individual, personal
letters have a much greater impact. Of course, you can
write a single letter, then personalize it for each person
you send it to.
• Include relevant personal information: perhaps dis
cuss how long you have used the Apple II. the types of
applications you use now or would like to use in the
future , the direction you would like to see Apple take in
developing, marketing and supporting the line. etc.
• Avoid negative or derogatory remarks. Focus on the
positive and look toward the future .
• Be sure to close your letters by thanking the reader for
his time.
• Mail your letters in a standard legal-size envelope
which looks businesslike.
• Mail your letters with a return receipt requested if you
can afford it.

Names and Addresses:

John Sculley
President and CEO
Apple Computer Inc
20525 Mariani Avenue
Cupertino CA 95014

Letters
InCider Magazine
80 Elm Street
Peterborough NH 03458

Letters Editor
Byte Magazine
One Phoenix Mill Lane
Peterborough NH 03458

Robert L Bartley Editor
The Wall Street Journal
200 Liberty Street
New York NY 10281

Letters
Nibble Magazine
52 Domino Drive
Concord MA 01 7 42

The following are individuals at Apple Computer, Inc. to
whom you may consider writing for greater effect (Write
to them at the same address as John Sculley.):

Michael H. Spindler
Senior VP and President. Apple USA

Bernard Gifford
Vice President, Education, Apple USA

Randall S. Battat
Vice President, Product Marketing, Apple Products

David Hancock
Senior Vice President, Marketing, Apple USA

Morris Taradalsky
Vice President, Customer Service and Information
Technology. Apple USA

Ian Diery
Senior Vice President. and President, Apple Pacific

r---------------------,
:Meet Other Apple II Developers!:
1 See and hear about the latest Apple II
: hardware & software developments

: Attend Apple's llgs College
I I /'or mo8t attendees, myself lnduded, the
Developers Conference hosted by A2·

I CentTal In July 1989 wa& an experience
I bordering on the reU[jOUII.
I IIUI Kennedy, Technical f.dltor, lnC/der

. I
lly popular demand, we're putting I

together another 112-Centra/ Summer
Conl'eie.ooe (popularly known In developer I
circles aa 'Kansa&fest'). Like last year, I
Apple Is sending a nurri>er of Ita engineers I
to do seminars and to run a bug-busting

I Wlthott exceptio11. evety attendee I hav.-. room Unlike last year, Apple 18 holding a I
I tallied to feels the first .42-Celllrlil Ill!" College at Avila the day before our 1
I Detdopen Confaenc:e at Avila CoUege In conference starts. I
Kansas City was a succeM. The retreat In addllon to speakers from Apple, we'll

I atmosphere wa& a significant factor In have talks and demonstratlona by active I
I mailing It so. developers willing to show their tricks. I
I CecU l'retweU, Technlcal r.dltor; CaU Apple There will be talks and exhibits by I
1 A& 1 1oo11 beck,. 1. was the mo8t po61Uve companies that provide tools to developers. I
complier conference I have ever been to And there wUI be plenty of time to talk to

I and I certainly reconunend It to anyone other developers. I
I with an ltXerest In the Apple 11 line. Yes, 1 You must register by June I to get the 1
I had a great Ume; yes, /learned 8 lot; yes, 1 best prices. which begin at $300 and I
I met 80IIIe otUtandlng people; and, yes, I'll Include all meal8. for more Information, I
go beck. call A2,:Ce~Jual at 913-469~02 (voice),

I All'tartln, r.dltor. The Road Apple 91~9~7 (fax) or write fO !lox 11250,1
I Overland rark, KS 66207. Or we're I

Al.CI!N'I'RAL on AppleUnk and .u.ceJ'ITRAL
I ono~~ I
I A2·Central Summer Conference I

: Avila College, Kansas City, Mo. :
I July 20 it 21, 1990 I
L---------------------~

TIRED OF SWAPPING DISKS?
THEN YOU NEED A KAT HARD DRIVE!

BUILT YOUR WAY!
KAT hard drives come in industrial-quali ty cases that have, (115-230
volt) 60 watt power supplies, cooling fan , two 50-pin connectors and
room for another half-height drive or tape back-up unit. Al so included
is a 6 ft. SCSI cable to go from the drive to your SCSI card. Now for
the good stuf!1 You will also receive 20 meg of freeware, shareware,
fonts, System 5.02 and public domain software. You r drive will have the
interleave and partitions set for You before the drive is exercised for
24 hours. You get all of this and a one-year par ts and labor warranty!
SB 48Seagate48meg40ms $549.99
SB 85 Seagate 85 meg 28ms $698.99
SB 105 Quantum 105 meg 12ms. $899.99

YOU BUILD IT!
SB CASE 2 HH Drives 7w 5h 16d $139.99
ZF CASE 1 HH Drive lOw 3h 12d $169.99
48 meg HD Seagate40ms 3.5" SCSI$349.99
85 meg HD Seagate 28ms 5.25" SCSI $469.99
105 meg HD Quantum 12ms 3.5" SCSI $699.99
T-60 TAPE Teac60megSCSI $449.99

WI Hard Drive $424.99
3.5" to 5.25" FRAME $12.50
CABLE 25 pin to 50 pin 6ft.. $19.99

50 pin to 50 pin 6ft $19 .99
NEW PRODUCTS!

VITESSE Inc. Salvation
Salvation is a slick new GS/OS-based volume backup/restore program
for the IIGS. You can backup multiple, single or portions of large
block devices including hard drives, RAM drives and ROM drives to
3.5" or 5.25" disks. Do you need to stop in the middle of the backup to
get to an important file? No problem with Salvation. It remembers
where you left off and starts back up at that point. Uses the familiar
Apple Desktop Interface. $39.99

QUICKIE
Quickie is the hand-held scanner we've all been waiting for! You get
up to 400 DPI and 16 shades of gray. Watch the image apear on the
screen as you scan then import it into your favorite paint, draw or
graphics program. $249.99

COMPUTER PERIPHERALS ViVa24
The ViVa24 is a 2400 baud modem that is 100% Hayes compatible.
Unique "tower" design allows for better viewing of the status icons
used in place of cryptic LED's on some modems. Comes with a FIVE -
YEAR WARRANTY! $139.99

HARRIS LABORATOIES, Inc. GS Sauce
The GS Sauce is a compact memory board that differs from most of
the rest. It uses low-power, cool-running CMOS SIMMs like the Mac.
You can use 256K or 1 meg SIMMs for a total of 4 megs. Made in the
USA. Limited lifetime warrantt $79.99

~1t1 :i i\tJ ~~ Wjt.{tt'l :iii ittJI
1 meg SIMMs 80 ns $89.99
1 meg x 1 80 ns 8 I $79.99
}E Conserver $79.99
}E Trans warp GS $289.99
AI Juice Plus W/1 meg $144.99
CH PRODUCTS FLIGHT STICK $49.99
KENSINGTON SYSTEM SAVER GS $69 .99
KENSINGTON TURBO MOUSE ADB 119.99
KEYTRONIC KEYBOARK 105 KEYS ADB $139.99
BYTE WORKS ORCA/C $89.99
BYTE WORKS ORCA/M $44.99
BYTE WORKS ORCA/PASCAL $89.99
BYTE WORKS DISASSEMBLER $34.99
CHECKMATE PROTERM 2.1 $89.99
ROGER WAGNER HYPERSTUDIO .. . , $94.99
ROGER WAGNER MACROMATE $37.99
STONE EDGE DB MASTER PRO $219.99
GENERIC 3.5" DS/DD BULK 50 I $.69

KAT
Phone: (913) 642-4611
Or Mail Orders To: KAT

8423 W 89th Street
Overland Park, KS 66212-3039

Gimme a Light
by Jerry Kindall, Classic Apple Editor

LIGHT is a simple line editor I wrote to assist me in the
editing of BASIC programs. Its major advantage is that
it fits entirely into page 3 of RAM, which means that it
doesn't take any program space away from BASIC,
allowing you to edit those really tight programs. Of
course, with only 192 bytes of code, its editing capabili
ties are rather rudimentary, but LIGHT has more fea
tures than you might expect.

LIGHT has character insert and delete, and control
character override to allow you to enter even illegal
characters into a line. It runs under both DOS 3.3 and
ProD OS and will work on any machine from an Apple II+
to a IIgs, or even a clone. It even has some rudimentary
80-column support, and works in Applesoft, the Moni
tor, or even the mini-assembler. All this in less than 192
bytes!

This article is really two articles in one. The first part is
intended for Applesoft programmers who just want to
use LIGHT to make quick and dirty changes to pro
grams. The second part may be of interest to assembly
language programmers, as it shows how to fit a maxi
mum of functionality into a minimum of code; it begins
under the subhead "How It Works".

Turning On The LIGHT

To install LIGHT, just BRUN it, and it will connect itself
to the ampersand hook. Once you have installed
LIGHT, it lies dormant waiting for you to issue an
ampersand command. When it sees an ampersand,
LIGHT connects itself to the BASIC I/0 hooks to inter
cept your keystrokes.

LIGHT Switches

After LIGHT has been connected by an ampersand
command, the following four keys become LIGHT com
mand keys:

Tab (Control-1 on Apple II+): Insert blank
space at cursor

Delete (Control-D on' II+): Delete character
left of cursor
Control-0: Enter control character into line
Control-X: Move cursor to first character of
input line

The Insert and Delete command keys work differently
from most other line editors, such as the venerable
GPLE. Instead of moving everything to the right of the
cursor forward and backward, Insert and Delete work
with the stuffto the left ofthe cursor. LIGHT isn't really
a line editor in the strictest sense of the word, it's just
a supplement to the Apple's built-in line editor (such as
it is}, and the built-in line editor only keeps track of
characters to the left of the cursor. It's a disconcerting
effect at first, but it works.

The Control-0 (Override) feature does not automatically
insert a space for the character entered. You'll have to
do that ahead of time with Insert. The Control-X
command replaces the Apple's normal cancel line
command; the new Control-Xis functionally equivalent
to the old one, since moving the cursor to the beginning
of the line causes the Apple's built-in editor to forget
everything you've typed. This one's just cleaner, that's
all.

Try it out! That's the best way to get used to LIGHTs
handy features. Remember, once you activate it with
the ampersand command, it's always active, so you can
hit a LIGHT editing key at any time.

Editing Existing Lines

To edit a line that's already part of your program, LIST
it on the screen. Then, using the usual Escape com
mands (Escape followed by the arrows or the IJKM
diamond), move the cursor to the first digit of the line's
line number. Then press ESC again to exit cursor
moving mode. Now use the right arrow key to move to
your first mistake, and use the Insert and Delete
commands to fix it. Use the left and right arrow keys to
move throughout the line. editing as needed. When you

are done, trace over the rest of the line with the right
arrow key before pressing Return.

Compressed Listings

To edit a REM or DATA statement, you can use the
command POKE 33,33, which will stop Applesoft from
indenting its listings. This is an old trick and isn't
specific to LIGI-IT. You could also use LIGI-ITs Delete
command to delete unwanted spaces: remember, Ap
plesoft adds an extra-space (which should be deleted)
after the REM or DATA token.

LIGHT also has a command designed especially for
compressing listings. Simply follow the ampersand
with the number of the line to list. LIGHT performs a
POKE 33,33 to cancel indentation and also removes all
spaces from a listing, except those inside quotation
marks. This dense-pack text display is ideal for editing
lengthy program lines.

To return to full-screen editing, type TEXT.

LIGHT Up Control Characters

You may have noticed that LIGI-IT displays most control
characters as inverse letters. When when you trace over
an inversed control character, LIGI-IT will pick it up as
if you'd typed it on the keyboard. The Return (Control
M). Backspace (Control-H), and Bell (Control-G) char
acters, however, are printed normally during LISTs to
preserve normal screen formatting.

If you enter one of the three special characters using
Control-0. it will be displayed as an inverse M, H. or G.
just as it should be. If you try to edit a line containing
these control characters, though, you'll lose them,
because they aren't displayed as inverse letters during
LISTing.

Double The LIGHT In SO-Column Mode

Some of LIGHT's features also work in SO-column mode
on the enhanced lie, the lie, and the ngs, but not the
original lie or the II+. The compressed listing command
(& line-number) works, and even sets a 72-column
screen window. The Insert. Delete. and Control-X
commands work fine as long as there are no control
characters to the left of the cursor. The control-0

command does not work, and neither does the inverse
control-character feature.

Switching to or from SO-column mode will disconnect
LIGI-IT. You should issue the & command after switch
ing to reconnect it.

Turning Off The Light

When LIGHT is connected. it will respond to its key
board commands anytime you see a cursor on the
screen, even during GET and INPUf statements in
BASIC programs. This usually isn't what you want, so
you should disconnect LIGHT before running your
program. Disconnection is vital if your program uses
page 3 of memory, as many programs do: overwriting
LIGI-IT while it is still connected will cause crashes. If
you do overwrite LIGI-IT with another program. you
must BRUN it from disk again to install it.

The easiest way to disconnect LIGHT is to reset t:l,;le
computer, which restores standard I/0 hooks, as well
as a full-screen text window. canceling the effects of
POKE 33,33 or LIGI-ITs compressed-lister command.

Ampersand-less LIGHT

If you want to use the ampersand hook for another
utility, be sure to install LIGHT before installing the
other program, because LIGI-IT does not pass on unrec
ognized ampersand commands to other ampersand
utilities. If this is not possible, or if the other program
also does not pass on ampersand commands, you can
BWAD LIGI-IT (not BRUN). If you're running under
DOS 3.3 (say what?) you will also need to CALL 714 after
BWADing LIGHT.

After loading LIGI-IT in this manner, you can use CALL
771 in place of an ampersand call with no parameters
to connect LIGHT. You can use CALL 768,num in place
of an ampersand call followed by a line number to list a
line in compressed format. The comma between the 768
and the line number is required.

You LIGHT Up My Program

If you are not using page 3 for another utility, you can
use LIGI-ITs editing features in your BASIC programs.
BWAD LIGHT near the beginning of the program. Just

before your INPur statement, CALL 771 to connect
LIGHT. The user of your program will be able to use
LIGHT to edit their input. After the INPill, disconnect
LIGHT using PRINT CHR$(4);"PR#O": PRINT
CHR$(4);"IN#O". Do not leave LIGHT connected during
GET statements, or during INPUT from disk.

How It Works

The main BRUN entry is at lines 32-59 and resides in
the keyboard buffer, since it is not needed after execu
tion. This section of code has three tasks: first, it
connects LIGHT to the ampersandvector(since LIGHTs
ampersand entry is at $303, I can just store the same
value into both bytes ofthe ampersand vector). Second,
LIGHT checks to see what operating system it's running
under. If it's DOS 3.3. the program is modified to use
the DOS 3.31/0 hooks at $AA53-$AA46 instead of the
ProDOS 1/0 hooks. Finally, if the computer is running
on a II+ , the check for an SO-column display is disabled
and the check for the Delete key is changed to look for
a Control-D instead.

Lines 63-91 are the main CALL and ampersand entry
point. If the program is entered with CALL 768, a call
to chkcom is made to check for the comma before the
line number. We set up the 1/0 vectors to point to our
special I/0 routines, and set up flags so that all
unquoted spaces will be removed from the output
stream. Next we check the character after the amper
sand or call to see if it's numeric. If it is, we set a 33 (or
73) column window and exit through Applesoft's LIST
routine to list the line on the screen. Otherwise we
deactivate space filtering and simply return to BASIC.

When the Apple wants a keypress, the input routine in
lines 95-108 is called. This routine calls keyin to get a
keypress, then checks for each of our new command
keys. The Control-X command is handled by lines 106
and 107, which simply backspace to the start of the
input line and go get another keypress.

The Delete command is handled in lines 112-120 by
backspacing to the beginning of the input line. printing
a space. and then reprinting all but the last character
of the input line. This shifts everything to the left of the
cursor one space to the right, leaving the cursor in the
same place but deleting the character to the left of the
cursor.

The Insert command {lines 124-131) works similarly,

backspacing one beyond the beginning of the input line
and moving everything to the left of the cursor back a
space. The cursor moves left along with the text.leaving
space to type new characters.

Lines 135-142 allow the user to enter any control
character after pressing Control-0. The cursor freezes,
and a keypress is accepted and plaeed directly into the
buffer and onto the screen.

The back, linout, and outdo subroutines at lines 144-
175 are called by the Insert and Delete routines. Back
moves the cursor to the beginning of the input line.
Linout prints the output line from the beginning to the
current cursor position. Outdo prints the current
character in inverse if it's a control character, or nor
mally if not.

The output routine (lines 179-202) is called whenever
Applesoft wants to print a character. It is this routine
which filters spaces from the Applesoft listing, and
prints Return, Backspace, and Bell normally to pre
serve screen formatting.

To keep the code size down I used what is commonly
known as spaghetti code: lots of wierd branches
around, one rts serving several subroutines, and things
like that. I also used self-modifYing code in the setup
routine. In short. I did a number of things that you're
not supposed to do, but the benefit is that the code is the
smallest possible size and actually packs quite a wallop.
If ever you have need to write super-compact code,
LIGHT can serve as an example.

You could also use LIGHT as a starting point for a more
sophisticated editor. If you gave yourself a few more
bytes. say a total of256. or 512. you ought to be able to
add a few new editing commands and make the compact
listing more flexible. By using 65C02 opcodes you could
fit even more power into your limited space. Anyway, I
hope you enjoy it!

LIGHT Program Listing

1
2
3
4
5
6
7
B
9
10
11
12
13
14
15
16
17
lB
19
20
21
22
23
24
25
26
27
2B
29
30
31

02BD: A9 4C 32
02BF: BD F5 0 33
02C2: A9 03 34
02C4: BD F6 03 35
02C7: BD F7 03 36
02CA : AD Dl 03 37
02CD: F0 lF 3B
02CF: A2 AA 39
02Dl: BE 07 03 40
02D4: BE 0C 03 41
02D7 : BE 11 03 42
02DA : BE 14 03 43
02DD: A2 53 44
02DF: BE 08 03~ 45
02E2: E8 46
02E3: BE 10 03 47
02E6: EB 4B
02E7: BE 06 03 49
02EA: EB 50
02EB: BE 13 03 51
02EE: AD 83 FB 52
02Fl: C9 EA 53
02F3: D0 0A 54
02F5: A9 21 55

••••••••••••••••••••••••••••••••
• *
* LIGHT *
*by Jerry Kindal l

*
* Merlin B Assembler

• • • • •
••••••••••••••••••••••••••••••••
indflg
f i 1 ter
wndwdth
chrgot
buf
doswrm
amper
pcsw
pksw
rdB0col
1 i st
outspc
chkcom
backl
rdkey
key in
coutl

=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=
=

$04
$05
$21
$87
$200
$3D0
$3F5
$BE30
$BE32
$C01F
$D6A5
$DB57
$DEBE
$FC10
$FD0C
$FD18
$FDF0

org $2BD

* Main BRUN entry :

:2

1 da
sta
1 da
sta
sta
lda
beq
ldx
stx
stx
stx
stx
ldx
stx
inx

•$4C
amper
•start
amper+l
amper+2
doswrm+l
:2
•$AA
mod1+2
mod2+2
mod3+2
mod4+2
•$53
mod2+1

stx mod3+1
inx
stx modl+l
inx
stx
lda
cmp
bne
lda

mod4+1
$FBB3
•SEA
:3
•33

; index and quote flag
;filter spaces from output?
;text window width
;get char at TXTPTR
;keyboard buffer
;DOS warm start vector
;& vector
;ProDOS output hook
;ProDOS input hook
; b i t 7 h i i f B0-co 1 s on
;BASIC 1 ist routine
;print a space
;skip over comma at TXTPTR
;backspace once
; input from current device
; input from keyboard
;output to screen

;set up & vector

;low byte & hi byte of
; entry point are the same

;check for DOS/ProDOS
;ProDOS - program OK
;otherwise modify for

DOS 3.3 use: DOS I/0
hooks are on page $AA

$AA53-$AA56 for I/0 hooks

; is it Apple II+?
;no -program OK

;otherwise disable B0-col

02F7: 8D 29 03 56
02FA: AS 84 57
02FC: 8D 39 03 58
02FF: 60 59

60
:3

sta
lda
sta
rts

61 • Ampersand/CALL entry
62

0300: 20 BE DE 63
64

0303: AS 33 65
0305: 8D 32 BE 66
0308 : AS AS 67
030A: 8D 30 BE 68
030D: AS 03 69
030F: 8D 33 BE 70
0312: 8D 31 BE 71

72
0315: 85 04 73
0317: 85 05 74

75
0319: 20 B7 00 76
031C : B0 12 77

78
031E: 08 79
031F: 2C 1F C0 80
0322: 30 04 81
0324: A2 21 82
0326: D0 02 83
0328 : A2 48 84
032A: 86 21 85
032C: 28 86

87
032D: 4C AS D6 88

89
0330: 66 05
0332 : 60

90
91
92

start
modl

mod2

mod3
mod4

L1
L2

L3

jsr

lda
sta
lda
sta
lda
sta
sta

sta
sta

jsr
bcs

php
bit
bmi
ldx
bne
ldx
stx
plp

jmp

ror
rts

chkcom

•input
pksw
•output
pcsw
•I input
pksw+1
pcsw+1

indflg
f i 1 ter

chrgot
L3

rd80col
L1
•33
L2
•72
wndwdth

1 i st

f i 1 ter

93 • Keyboard input entry
94

0333: 20 1B FD 95
0336: 85 05 96

97

input

0338: CS FF 98 L4
033A: F0 11 99
033C : CS 89 100
033E : F0 1E 101
0340: CS SF 102
0342 : F0 2C 103
0344 : cs 98 104
0346 : D0 42 105
0348 : 20 7E 03 106
034B : F0 20 107

jsr
sta

cmp
beq
cmp
beq
cmp
beq
cmp
bne
jsr
beq

key in
f i 1 ter

•$FF
delete
•$89
insert
•$8F
ctrl
•$98
backx
back
rd

;and change delete key to
; ctrl-D
;exit until later

;entry for CALL 768 , ••

;entry from ampersand call
set up 1/0 vectors to

; point to output and input

;clear hi bit of both
; filter and indflg
; turning on space filter
;get char after &
; if not • then return to BASIC

;save processor status
;80-columns on?
;yes, use 72-col window
;otherwise use 33 cols

;changed to ldx •33 on II+

;get status flags back

;& enter BASIC 1 ist

;set hi bit of filter
; to deactivate space strip

;get a keypress
;turn off output filter

;delete (changed to AD on II+)
; so delete char
; contro 1 -I (Tab)
; so insert char
;control-0
; so enter ctrl char
;control-X
; handle it r ight here
;go to beginning of 1 ine
; (always) get next char

108 ;x-reg is zero now
10S
110 * Delete char to left of cursor
11 1

034D: E0 00 112 delete cpx •0 ; if at first char pos,
034F: F0 1C 113 beq rd ; nothing to delete

114
0351 : 20 7E 03 115 jsr back ;move cursor back
0354 : 20 57 DB 116 jsr outspc ;print a space
0357 : C6 04 117 dec indflg ;delete char from buffer

118
035S : 20 8B 03 11S jsr 1 i nout ; print buffer contents
035C : F0 0F 120 beq rd ;always

121
122 • Insert blank at cursor
123

035E : 20 7E 03 124 insert jsr back ; back to beginning
0361 : 20 10 FC 125 jsr back1 ;back one more

126
0364 : 20 8B 03 127 jsr 1 i nout ;then print buffer
0367 : 20 57 DB 128 jsr outspc ;and a space
036A : 20 10 FC 12S jsr back1 ;then a backspace

130
036D: 4C 0C FD 131 rd jmp rdkey

132
133 * Enter control character
134

0370: AS FF 135 ctrl 1 da •$FF ;freeze cursor
0372 : 20 1B FD 136 jsr key in ; and get character

137
0375: 20 SA 03 138 jsr outdo ;now output it

13S
0378: SD 00 02 140 sta buf,x ;put it in buffer
037B : E8 141 inx ; move cursor r ight 1
037C: D0 EF 142 bne rd ; always

143
144 * Backspace to start of input
145

037E: 86 04 146 back stx indflg ;save x register
147

0380 : E0 00 148 cpx •0 ; if no characters,
0382 : F0 06 14S beq backx ; do nothing

150
0384 : 20 10 FC 151 : 1 jsr back1 ;backspace
0387: CA 152 dex
0388 : D0 FA 153 bne : 1

154
038A: 60 155 backx rts

156
157 * Output contents of input buffer
158

038B : A2 00 15S 1 i nout 1 dx •0 ;beg i nning of buffer

0380: E4 04
038F : F0 F9

160
161 : 1
162
163

0391 : 80 00 02 164
0394 : 20 9A 03 165
0397: E8 166
0398 : 00 F3 167

168

cpx
beq

lda
jsr
inx
bne

indflg
backx

buf,x
outdo

: 1

; are we at end?
; yes - ex i t

;no - pr int char

;always

169 * Output control characters in inverse
170

039A : 29 7F 171 outdo
039C: C9 20 172
039E: 90 02 173
03A0: 09 80 174
03A2: 4C F0 FD 175 docout

176

and
cmp
bee
ora
jmp

•$7F
•$20
doc out
•$80
cout1

;clear hi bit
;control character?
;yes -print inverse
;otherwise restore h i bit

177 *Output while f i ltering spaces

03A5 : 24 05
03A7 : 30 14

03A9: C9 A2
03AB: 00 08

03AD: AS 04
03AF: 49 80
0381 : 85 04
0383 : A9 A2

0385 : C9 A0
0387 : 00 04

0389 : 24 04
0388 : 10 CD

0380 : C9 80
03BF : F0 E1
03C1 : C9 88
03C3: F0 DO
03C5 : C9 87
03C7: F0 09
03C9: 00 CF

178
179 output
180
181
182
183
184
185
186
187
188
189
190 : 1
191
192
193
194
195
196 :2
197
198
199
200
201
202

bit
bmi

cmp
bne

lda
eor
sta
lda

cmp
bne

bit
bpl

cmp
beq
cmp
beq
cmp
beq
bne

~nd assembly , 270 bytes, Errors: 0

f i 1 ter
: 2

•$A2
: 1

indflg
•$80
indflg
•$A2

•$A0
: 2

indflg
backx

•$80
docout
•$88
doc out
•$87
docout
outdo

; should we remove spaces?
;no- output normally

;got quote mark?
;no

;yes - toggle quote flag

;and restore quote c har

;do we have a space?
;no

;yes, i s it in quotes?
;no - exit without pr inting

; is char CR?
;yes - print thru cout1
; is i t BS?
;print thru cout1
; is i t BELL?
;so beep already!
;always, print ctrl char inverse

Y.YNr!' ... Yri'Nrl'rl' rl'ri' ... Y.•~L..-"'=$:!!'1h.,.e111M .. e111
rl .. in

111
M .. a111n11ia~c':""""--'~ri'Nrl'rl'ri'.YNrl'ri' ... Y.W.•.-.-.y

Rolling Your Own (Controls)
by Steve Stephenson

I was working on a project recently that needed buttons
in the window. It is a pain to juggle controls and
scrolling text in the content area of a window (without
the new Text Edit). So, I decided that I would put the
controls in the Info Bar. I had read GS Tech Note #3
which hinted that this could be done. After many
frustrating hours of trying to make it work. I discovered
that the Tech Note had been revised. It says, M(Note: The
Control Manager currently will not allow controls it
creates in an information bar. In this case, NewControl
would be using a port that is not in your window's port,
ham ely the Window Manager's port.)". I decided that
since I couldn't use the Control Manager, I would put
together some routines that would look and act the
same.

The parts of this project fall into three categories: -
Creating and updating the info bar itself. - Detecting
and responding to info bar events. - Other routines to
simulate the Control Manager.

Creating and Updating

Creating an info bar seems simple enough; however,
there are some ·gotchas'. The first one that seems to get
everyone is that your update routine (to redraw the info
bar) gets called DURING _NewWindow! If your routine
uses things that are not ready until after the window is
established. you will probably see just the hollow win
dow frame drawn as your pride and joy expresses its
frustration with the customary 'bonk'!

I was also thrown by the coordinate system that is used
in the info bar. Where the 0,0 point for everything else
you put in a window is the upper left comer of the
content area: the 0,0 point for the info bar is the upper
left comer of the window's frame! So if you start drawing
at 0,0, you won't see anything. Even if you move down
by a unit of the font height, you still won't be far enough.
In the listing, you will find that I used a constant.
MinfoBarrop". that is the height of the title bar that has
to be added to get down to the real top of the info bar.

To coax your window to show an info bar, you need to
set the 'flnfo'frame bit. You also set the number of pixels
tall the bar needs to be. That's easy: but now you need
a procedure to draw the inside of the bar. It's one of
those strange procedures where vital variables are
already on the stackforyou. but you get to pull them off
when you're done.

My update routine nnfoUpdate") just draws 4 'buttons'
in their proper state. It should be easy enough to follow.
but there are some items that may need a little explana
tion. For example. my choice of a 3 by l pensize (rather
than the standard l by l) seemed to me to look most like
what the Control Mgr uses.

I used rounded rectangles because the rest of the
program was using them: it certaihly would have been
easier to draw regular rectangles! If you're curious
about MOvalHeight" and MOvalWidth". they are required
by _FrameRRect. _EraseRRect, and InvertRRect. How
did I come up with these values? Well. after a lot of
thought and attempts to create a formula, I was unable
to find a correlation between the values needed and the
rest ofthe rectangle, so the values are the result of some
tedious trial and error.

One other item that could stand a little light is my use
of the tables, MOutsideRects" and MinsideRects". I have
always found it tedious to construct a table of numbers.
and a much bigger pain to make changes. The ultimate
pain comes when you try to update your program
months or years later. So, when I need to construct a list
of values such as this, I try to boil it down to the few
items that I might need to change in the future and
assign them as constants. Then create a table entry that
is based on those constants. With a little care and
planning, you can loop for the total number of items and
let Merlin generate the table for you.

My button titles also needed to be able to change, so the
update routine allows for varying title string lengths
and automatically centers the string.

I also had to be able to altemate the buttons between
enabled and disabled. The status of each button is kept
in the "EnableTable". To show a button as disabled, you
first draw it normally, then erase every other pixel.

Detecting and Responding

The central core of detecting a hit in a button uses
_PtlnRect to compare whether the point of the mouse
click is within the area of the button. To simulate a
_FindControl, we loop through all four buttons check
ing the point. But first. we must get the coordinate
systems on the same level. A call to _StartinfoDrawing
will set the coordinates relative to the info bar (this call
must be balanced by an _EndinfoDrawing call). Then
_GlobaiToLocal will convert the point; the 'local' is now
the info bar. We also need to supply _StartinfoDrawing
with the pointer to the info bar's RECT. This RECT is
found with _ GetRectlnfo and only needs to be done
once; a good place to put the call is right after creating
the window.

When "CheckHit" retums the variable, "inButton" set to
True, it's time to 'track' the control. To do this, we set up
a loop that continues while the mouse button is still
down. Each time through, it checks the location of the
mouse. Just like the real_TrackControl, a release ofthe
button when out of the control is not considered a hit.
So, every time the mouse strays out of the control, it is
inverted back to normal.

When the mouse button is released, "ButtonNum"
holds the local number ofthe hit (a miss is assigned the
number zero). It is then a simple matter of looking up
the address of that button's handler. I did not provide
any useful handlers for these buttons as that is entirely
up to you and what your program needs.

Other Routines

I've thrown in some other routines that you may need to
complete the simulation of the Control Manager.

To change the s tate of a button's enabling, just change
it's entry in the "EnableTable" and call _DrawinfoBar.
This call redraws the entire info bar using your update
routine. Refer to "DisableButton".

To change the button's title, I provided the routine
"ChangeButtonTitle", which clears the current button's

rectangle and calls the low level routine "DrawButton"
to redraw it. See "DoButton3" for an example.

You might like to have your buttons also respond to key
equivalents. The example, "HotKey". shows what to do
after detecting a key event and deciding that it is yours
to handle. It uses the low level routine "SelectButton" to
flash the button on and off, then uses the low level entry
point "GoButton" to be handled by that button's rou
tine.

1
•===

2 •Copyright 1990 Steve Stephenson & Ariel Pub
3 •some rights reserved.
4
~ • some constants
6
7
8
9

10
11
12
13
14
1~

16
17
18
19
20
21
22
23
24
2~

26
27

top
left
bottom
right

oW hat
oMessage
oWhen
oW here
oMod ifiers

act ive
inactive

Info8arTop
spacing
buttonwidth =
buttonheight
ova1Width =
ovalHeight =

0
2
4
6

0
2
6
10
14

$00
$ff

13
10
80
11
24
8

;rect offsets

;event record offsets

; boolean constants

;offset to bar top
; between buttons
;width of a button
; he ight of a butto

28 WindowPtr ext ; you provide these
29 EventRecord ext
30
31 •===
32 InfoUpdate ent ; Window Mgr only !
33 phb ; save 8
34 phk ; reset 8
3~ plb
36 phd ; save D
37 tsc
38 ted
39 • what the dpage-in-stack
40 dum 1
41 : d ds 2
42 : b ds 1
43 :rt 1 ds 3
44 :windPtr adrl 0

; reset D

looks 1 ike :
; stk ptr
;saved D
; s aved 8
; caller's r tn addr
; window's port

45 : iRefCon adrl 0
46 : iRect adrl 0

; i nfobar RefCon
; i nf obar~ RECT

dend 47
48
49
50
51
52
53
54

- GetPenMas k •origmask ;save mask
-GetPenSize •origsize ; & pens ize

-setPenSize •3 ; •1 ; reset pen
1 da •4 ; • of buttons
sta ButtonNum

55 : drawlp
56
57

jsr DrawButton ; make one button
dec ButtonNum;countdown til done
bne :drawlp

58
59 -setPenSize •origsize;•origsize+2
60
61 pld ; restore D
62 • pull B & the RTL addr off temporarily
63 p 1 x ; B & rt 1 bnk
64 p 1 y ; rt 1 addr
65 • pop the stuff that was passed to us
66 pla (windowptr)
67 pla
68 pla
69 pla
70 pla
71 pla
72 • now put the
73 phy
74 phx

(ref con)

(rect)

B & RTL addr back onto stk
rtl addr

; rtl bnk & B
75 • and exit to caller
76 plb ;restore B
77 rtl ;back to ~indow Mgr
78
79 origmask ds 8
80 ButtonNum dw 0
81 •
82 • Draws one complete button (ButtonNum set)
83 DrawButton
84
85

jsr GetRectOffset ; table index

86 • draw the frame
87 pea •AOutsideRects ; push hi word
88 lda •OutsideRects ;start of table
89 clc
90
91
92
93
94
95
96
97
98
99

100
101

• lookup

adc
ph a
pea

RectOffset;+ button ' s offset
; push lo word

•oval~idth ;oval dimensions
pea •ova1Height
_FrameRRect ;draw the outside

the ptr to the title string
pea •ATitl es ;hi word (all same)
lda ButtonNum
asl
tax
lda Titles-2 , x ; 1 o word

102
103

ph a ; (for _DrawString)

104 • find width of str for centering title
105 pha ; space
106 pea •ATitles ;calc title width
107 pha for centering
108 _String~idth

109 (w i dth on stk)
110 • position the pen for drawing the title
111 lda •buttonwidth ; width of button
112
113
114
115
116
117
118
119
120
121
122

sec
sbc
lsr
sta
ldx
lda
adc

Ls

Ls
RectOffset

; minus title width
; div 2 = offset

from left

OutsideRects+left , x;left side
1, s ; + offset

sta l,s ; = hor iz start
pea •InfoBarTop+10 ; move vert down
_MoveTo by f ont height

123 • now draw it (title ptr still on stk)
124
125

_DrawString

126 • set the dimming as required
127 1 da ButtonNum
128 asl
129 tax
130 lda EnableTable-2 ,x ; enabled?
131 beq :active ; yes, leave as is
132 :inactive ; no, draw d isabled
133 . -setPenMask •dimmask

pea
lda
clc
adc
ph a
pea

•AinsideRects ; use inside rect
•InsideRects

RectOffset

•oval~idth-3 ; & reduced ova ls

134
135
136
137
138
139
140
141

pea •ovalHeight-3
_EraseRRect ; thru the d im mask

142 -setPenMask •origmask;& restore pen
143 :active
144 rts
145
146 •
147 • Calc the offset into the table of rects
148 GetRectOffset
149 lda ButtonNum
150 dec
151 asl
152 asl
153 asl
154 sta RectOffset
155 rts
156
157 RectOffset dw 0
158 •

; (make 0-relative)
; •8 bytes in a rect

159 • Invert the inside of the button
160 • RectOffset must already be setup
161 InvertButton
162 lda black

•1
black

; fl ip the state
; of the color 163

164
165
166
167
168
169
170
171
172
173
174
175
176 black
177

eor
sta

pea
lda
clc

; (for "track ctl")

•"'InsideRects
•InsideRects ;use inside rect

adc RectOffset
ph a
pea •ovalWidth-3 ;& reduced ovals
pea •ovalHeight-3

InvertRRect ;reverse it
rts

dw 0

•==
178 • Call here on a mouse click in the info bar
179 InlnfoBar ent
180 lda EventRecord+oWhere+2

thePoint+2 ;copy of the point
EventRecord+oWhere

181
182
183
184
185
186.
187
188
189
190 :find
191
192
193
194
195

sta
lda
sta thePoint

jsr StartinfoDraw ;change coords
-GlobalTolocal •thePoint;convert pt

lda
sta
lda
asl
tax
lda
bne
jsr

•4
ButtonNum
ButtonNum

;loop thru each

EnableTable-2,x ;enabled?
:disabled ; no, skip it
GetRectOffset

196 jsr CheckHit
:hit

yes, hit here?
yes, handle it
no, next button

197 bne
198 :disabled
199
200
201
202
203

dec ButtonNum
bne :find
_SysBeep
bra :done

204 • do "Track control"
205 :hit
206 lda black

;done all buttons?
no, loop

; yes, beep

;track the hit
; is it inverted?

207
208
209
210
211
212
213
214

bne
jsr

:stilldown

:stilldown yes, skip invert
InvertButton ;no, go to black

- St i 1 1 Down •0
pla
sta mouseDown

;see if holding btn

beq :up ;btn released
-GetMouse •thePoint;holding, is loc

215
216
217

jsr
bne

CheckHit
:hit

still in button?
yes, continue

218 • button either released or mouse strayed
219 : up
220
221
222
223 :stray?
224
225
226
227
228
229 :done
230
231

lda
beq
jsr

lda
bne
lda
bne
stz

jsr

black ; already outside?
:stray? yes, skip invert
InvertButton ; no, go to white

mouseDown
:sti lldown
inButton
: done
ButtonNum

;still holding?
yes, track i t
no, released
good hit, handle
outside, ignore

~ndinfoDraw ; reset coords

232 GoButton ent
233 1 da ButtonNum

:none

;handle the hit

234
235
236
237
238 :none
239
240 Buttons
241
242
243
244
245

beq
asl
tax
jsr
rts

da
da
da
da

;strayed, ignore it

(Buttons-2,x) ;do the fn

DoButton1
DoButton2
DoButton3
DoButton4

;to your routines ..

246 mouseDown dw
247 thePoint dw

0
0,0

248 •
249 • See if click is in the button
250 • Enter with RectOffset already calcu l ated
251 • Returns boolean result in inButton
252 CheckHit
253
254
255
256
257
258
259
260
261
262
263

pha ; space for result
Pushlong •thePoint
pea •"'InsideRects
lda •InsideRects ; use inside rect
clc
adc RectOffset
ph a
_PtlnRect ;hit in the rect?
PullWord inButton ; result
rts

264 inButton dw 0
265

•==
266 • Reset coordinates relative to the info bar
267 • Save orig inal & reset pensize
268 StartinfoDraw
269
2?0

-startinfoDrawing •iRect;W i ndowPtr
-GetPenSize •origsize ; save

271
272
273

-setPenSize •3;•1 ;reset
rts

274 iRect ent
275 dw
276 origsize dw
277

•==
278 • Restore pensize to original
279 • Reset coordinates back to window
280 EndlnfoOraw
281 -setPenSize •origsize;•origsize+2
282 _EndinfoOrawing
283
284
285

rts

•==
286 • Flash the ButtonNum button on and off
287 SelectButton ent
288 jsr StartlnfoDraw
289 jsr GetRectOffset
290 jsr InvertButton ; hi 1 ite on
291 ldx •$8000 ;short pause
292 : delay dex
293 bne :delay
294 jsr InvertButton ; hil ite off
295 jmp EndinfoDraw
296
297

•==
298 • Call here after installing new title ptr
299 • in the Titles table; redraws the button
300 ChangeButtonTitle
301 jsr StartinfoDraw
302 jsr GetRectOffset
303 pea •"Outs i deRects ; clr old rect
304 lda •OutsideRects
305
306
307
308
309
310
311
312
313
314

clc
adc
ph a
pea

RectOffset

•ova l Width
pea •ovalHeight
_EraseRRect
jsr OrawButton ; with new title
jmp EndlnfoOraw

•==
315 Titles
316 da str : b1
317 da str:b2
318 str:ptr da str : b3
319 da str:b4
320
321 str:bl str 'More'
322 str :b2 str ' Less'
323 str:b3 str 'Maybe'

324 str:b3 : a str 'Why not'
325 str:b4 str 'Really?'
326
327 EnableTable ent
328 dw inactive
329 dw inactive
330 dw active
331 dw active
332
333 OutsideRects
334]right 0 ; in it to 0
335 lup 4 ; make 4 outer rects
336]top InfoBarTop+1
337] left] r i ght+spac i ng
338]bottom]top+buttonheight
339]right]left+buttonwidth
340 dw]top
341 dw] 1 eft
342 dw]bottom
343 dw]right
344 -,..

345
346 InsideRects
347]right 0 ; init to 0
348 lup 4 ; make 4 inner rects
349]top InfoBarTop+1
350]left] r i ght+spac i ng
351]bottom]top+buttonheight
352] right]left+buttonwidth
353 dw] top+1 ; inset from frame
354 dw] left+3 ; 1 high & 3 wide
355 dw] bottom-1
356 dw] r i ght-3
357 -,..

358
359 OimMask
360 dfb :C01010101
361 dfb :C10101010
362 dfb :C01010101
363 dfb :C10101010
364 dfb :C01010101
365 dfb :C10101010
366 dfb :C01010101
367 dfb :C10101010
368
369

•==
370 • The Button Handler routines
371

•==
372 OoButtonl
373 Oo8utton2
374 Oo8utton4
375 ; it's up to you .. .
376 rts
377
378 •

379 DoButton3 ;swap to alt title
380 lda titleFl ip
381 eor •1 ;toggle state
382 sta titleFl ip
383 bne :alt
384 lda •str :b3 ;prime string
385 bra :flip
386 :alt lda •str:b3 : a ;alternate string
387 :flip
388 ldx •b3"'2
389 sta Titles-2,x ; install new ptr
390 jsr ChangeButtonTitle;& redraw it
391
392 "' then do whatever you need to . ..
393 rts
394
395 t i t 1 eF 1 i p dw 0
396
397

•==
398 HotKey ent
399 sta ButtonNum ; 1 ookup in table
400 asl
401 tax
402 lda EnableTable-2,x ;enabled?
403 bne :disabled no, skip it
404 jsr SelectButton yes, flash it
405 jmp GoButton & handle it.
406
407 :disabled
408 rts
409
410

•==
411 DisableButton
412 1 dx •b2"'2 ; dim 2nd button
413 lda •inactive
414 sta EnableTable,x
415 -orawlnfoBar ~indowPtr
416
417
418

rts

•==

Hired Guns

8/16 is providing a free service to all programmers (who
are subscribers!): placement of a complimentary "situ
ation wanted" ad. If you're available for hire and looking
for a programming job (from full-time to freelance), a
listing in this directory is your ticket to work. The ads
are open to both 8 and 16 bit authors and are limited to
120 words or less. Be sure to give your address. phone
number, and email addresses, and specify how much of
a job you're after (part-time? full-time? royalty-based?
etc). Send it to Situation Wanted. c/o Ariel Publishing.
Box 398, Pateros. WA 98846

This month we're covering M-Z:

Eric Mueller. 2760 Roundtop Drive, Colorado Springs, CO, 80918,
719-548-8295 anytime. GEnie: [A2PRO.ERIC], CIS: 73567,1656,
AO: "A2Pro Eric". Strengths include GS/OS and ProDOS 8 work,
console, and modem 110, working with hardware/firmware, desktop
applications, desk accessories. Can also do tool patches, !NITs,
whatever. Don't call me for complex animation or sound work. Have
experience working with others on programs, and on large applica
tions. References available. Prefer 16 bit stuff always. Looking for
very small (less than 25 hrs/month) jobs right now.

Bryan Pietrzak, 4313 West 207th St, Matteson, II, 60443, (708)
748-6363, or (217) 356-4351. GEnie: B.PIETRZAK1. Strengths
include database design and data structures (hashing, etc) and GS/
OS. Looking only for small jobs/part time work. I prefer to work in the
16-bit GS world, but can program Pascal on any system.

Lane Roath, Ideas From the Deep, 309 Oak Ridge Lane, Haughton,
LA 71037. (318) 949-8264 (leave message with phone number!) or
(318) 221-5134 (work). GEnie: L.Roath, Delphi: LRoath. Available
for part time work, large or small for any of the Apple II line, especially
the llgs. Specializing in disk l/0 graphics and application program
ming. Wrote Dark Castle GS, Disk Utility Package, WordWorks WP,
Project Manager, DeepDOS, LaneDOS, etc. including documenta
tion. Currently work for Softdisk G-S. Work only in Assembler.

Steve Stephenson (Synesis Systems), 2628 E. lsabella, Mesa, AZ,
85204, 602-926-8284, anytime. GEnie: [S-STEPHENSON], AOL:
"Steve S816". Available for projects large or small on contract and/
or royalty basis, Experienced in programming all Apple II computers
(prefer IIGS), documentation writing/editing and project manage
ment. Have expertise in utilities, desk accessories, drivers, diagnos
tics, patching, modifying, and hardware level interfacing. Willing to

maintain or customize your existing program. Work only in assembly
language. Authored SQUIRT and Checkmate Technology's Apple
Works Expander, managed the ProTERM(tm) project, and co
invented MemorySaver(tm) [patent pending]. Picture This!
Jonah Stich, 6 Lafayette West, Princeton, NJ, 08540. (609) 683-
1396, after 3:30 or on weekends. America Online (preferred):

Envision a full page ad for
your product passing in
front of thousands of the
most active Apple II hard
ware and software buyers
in the world!

JonahS;GEnie:J.STICH1; lnterNET:jonah@amos.ucsd.edu. Have
been programming Apples for 7 years, and can speak Assembly
(primary language), C, and Pascal. Currently working on the GS,
extremely skilled in graphics, animation, and sound, as well as all
aspects of toolbox programming. Prefer to work alone or with one or
two others. Can spend about 125 hours a month on projects.

Loren W. Wright, 6 Addison Road, Nashua, NH 03062, (603)-891-
2331. GEnie: [L.WRIGHT2]. Lots of experience in 6502 assembly,
BASIC, C, Pascal, and PLM on a wide variety of machines: Apple II,
llgs, C64, VIC20, PET, Wang OIS. Some figs desktop programming.
Have done several C64<>Apple program conversions. Numerous
articles and regular columns in Nibble and MICRO magazines.
Product reviews and beta testing. Specialties include user interface,
graphics, and printer graphics. Looking for full-time work in New
England and/or at-home contract work.

And at about 1 0°/o of the cost of a
similar ad in other publications!

Our ad representatives would be excited to
work with you and plan an ad that would be
the most cost effective for you.

Call (509) 923-2249 and ask for an ad kit.
Or write Ariel Publishing, Box 398, Pateros,
WA 98846.

w E WANT YOUR BEST!
S o you've written a great piece of Apple II or Apple lies software,

but you're not sure how to turn all that hard work into hard cash.
You're wary of shareware and you've been snubbed by other

publishers.

L et us take a look at your work! We are the publishers of Softdisk
and Softdisk G-S, monthly collections of software sold by
subscription, and we're looking for top-notch Apple II and Apple

IIGS software. We respond promptly, pay well, and are actually fun to
work with!

To submit your software for possible publication, send in your best to:

SOFTDISK PUBLISHING, INC.
606 Common St.

Shreveport, LA 71101
AITN: Apple Submissions

Here's a short list of
what will put a gleam in
our eyes (and money in
your pocket)' For more
details, contact Jay
Wilbur at (318) 221-
5134.

Teacher Utilities
Gradebook
Test Maker/Scorer
Attendance Keeper
Award Maker

Educational Lessons
Geometry
Math
Physics
Science

Resume Maker
Graphical Music Maker
Recipe Card Filer
Magazine Indexer
A ppleWorks DB Reader
Art C lipper DA
P aint Program
Cartoon Construction Kit
Fonts
ChpArt
Desk Accessories

This is an unpaid advertisement. Oh well.

@®r WCIJrey ©~ ~lkwJil
• 8/16 on Disk •

The magazine you are now holding in your hands is but a subset of the material on the 8/16 disk. We
have combed the BBS's and data services across the country to collect the best of the public domain and
shareware offerings for programmers. Not only that, but we have extra articles and source code written
by our staff. With DLT 16 and D L T8 (Display Launcher Thingamajigs) to guide you. you can read articles.
display graphics, and even launch applications.

1 year- $69.95 6 months- $39.95 3 months - $21

• Shem The Penman's Guide To Interactive Fiction •

This is undoubtedly my personal favorite of all our software offerings. First of all, it is FUN. Second of
all it is a very well organized. well written, and well programmed introduction to programming interactive
fiction. It is, in fact, the only package of its kind I've ever seen!

Author Chet Day is a professional writer (go buy Hacker at your nearest book store!) and an educator who
is as conemed with the content of your interactive fiction program as with the form. This package is fun.
entertaining, and useful. It includes Applesoft, ZBasic, and Micol Advanced Basic "shells~ which will
drive your creations- $39.95 (both 5.25" and 3.5" disks supplied). P.S. The advantage to the ZBasic
and Micol versions is that with the easy integration oftext and graphics provided in those langauges. you
can easily load a graphic and overlay text in the appropriate spots.

• ProTools™ • SPECIAL PRICE TmS MONTH! ~
Fast approaching its first birthday. our ProTools library for ZBasic programmers has grown into a mature
and powerful product. It's bigger than ever, too. in Cider's Joe Abernathy called it, " ... the only way to go
for ZBasic programmers.~

ProTools includes a text based anda double high resolution graphics based desktop interface (pull-down
menus, windows, mouse tracking, etc.) Both desktops support quick-key equivalents for menu items,
too! We've added a third desktop package in version 2.5 ofProTools, too. This one is mouseless, meaning
that it is entirely keyboard driven and therefore much more compact than its predecessors.

Mr. Ed, our "any window~ text editor, will provide Apple Works™ command compatible text editing in the
screen rectangle of your choice. With no limit to edit field length. Mr.Ed is like having a word processor
available as part of your program. Our newest version of Mr. Ed will even scroll the window if you want
to support edit fields longer than your designated rectangle!

ProTools contains literally scores of additional functions and routines, including:

ProTools is $29.95 (5.25" and 3.5" disks supplied). This is $10 off the normal price!

• Zindex • (NEW! - and shipping)

If you need to write a database in ZBasic (or any other BASIC that supports multi-statement functions),
Zlndex is the mechanism that will free you from the memory restrictions imposed by 128K Apple II's.
Zlndexmanages B+ Tree indices for the key fields of your choice (it creates an index file for each key field).
You can look up records in virtually any order with nearly RAM speeds, even though your data files are
disk based.

Zlndex supports up to 65535 records and can perform key insertions, deletions, finds. find next, find
previous, find first. find last. and find with record. The function can be used to index an existing
database or a new one. It can also index unique keys or non-unique keys.

Zlndexretails for $39.95 and is shipped with both 3.5" and 5.25" disks. (Note: The current version is
written specifically for ZBasic. Conversion to other BASICs may involve some translation.)

• Micol Advanced Basic • SPECIAL INTRO PRICES!

Micol Systems, Canada has produced two BASICs that should be of interest to anyone looking to
empower their Apple II. Micol Advanced Basic Ile/Ilc is for 128KApples. and Micol Advanced Basic GS
is for the Apple IIgs. One of the many features that recommend these two are that the GS version is
upwardly compatible with Ile/IIc version. This means your 8 bit software can be quickly ported to the
GS and almost immediately take advantage of the additional speed, memory, and graphics modes of
the machine.

Both versions integrate graphics and text with equal ease, and both versions also provide local variables,
multi-statement functions, terrific editors, multi-parameter subroutines, structured loops, and just
about anything else a mature. modem language should have. The GS version has recently been
extended to provide a simple interface for the creation of desktop-based programs.

MAB Ile/IIc $66.00 MAB GS $87.00

Our guarantee: Ariel Publishing guarantees your satisfaction with our entire product line (software and
publications). If you are ever dissatisfied with one of our products, we will cheerfully refund the amount
you paid on your request. Furthermore, we will ship the software packages to you on 30 day approval,
meaning that you'll not have to pay until you've had the stuff for nearly a month. Of course, we take
checks, VISA and MasterCard up front, too. Just write to: Ariel Publishing, Box 398, Pateros, WA
98846 or call (509) 923-2249. • We also hock some mag called 8/16. It's 29.95 for 1 yr. $56 for 2.•

The Sensational Lasers
Apple lle/llc Compatible

$375 Includes 10 free
software programs!

~ Now Includes

The Laser 128 " features fuli Apple " U compatibility with an internal d1sk dnve. senai. parallel. modem. and
mouse ports. When you re ready to exp::tnd your system . there's an external drive port and expansion slot The
Laser 128 even 1ncludes 10 free software packages' Take advantage of th1s except1onal value today $375

Super High Speed Option!

only $425
The LASER 128EX has all the features of the
LASER 128. plus a triple speed processor and
memory expansion to 1MB $425.00

The LASER 128EX /2 has all the features of the
LASER 128EX, plus MIDI, Clock and Daisy
Chain Drive Controller $465.00

DISK DRIVES
• 5.25 LASER/Apple 11c $ 99.00
• 5.25 Apple 11e $ 99.00
• 3.50 Apple BOOK ~ $179.00
• 5.25 LASER Daisy Chain . .. ~ $109.00
• 3.50 LASER Daisy Chain $179 00

U.S.A. MICRO
~ ~ 2888 Bluff S1reet. Suite 257 • Boulder. CO 80301
f!ll!!!ll!l llillliililf Add 3°10 Shipping· Colorado Residents Add 3% Tax

Your satisfaction is our guarantee!

Save Money by Buying
a Complete Packagel

THE STAR a LASER 128 Computer with 12"
Monochrome Monitor and the LASER 145E
Printer $645.00

THE SUPERSTAR a LASER 128 Computer with
14" RGB Color Monitor and the LASER 145E
Printer $825.00

ACCESSORIES
• 12" Monochrome Monitor $ 89.00
• 14" RGB Color Monitor $249.00
• LASER 190E Printer $219.00
• LASER 145E Printer $189.00
• Mouse $ 59.00
• Joystick (3) Button $ 29.00
• 1200/2400 Baud Modem Auto $149.00

YOUR DIRECT SOURCE FOR APPLE
AND IBM COMPATIBLE COMPUTERS

:J Phone Orders: 1-800-654-5426
8- 5 Mountain Time • No Surcharge on Visa or MasterCard Orders!

Customer Serv•ce 1·800·537·8596 · In Colorado !3031 938·9089

BULK RATE
U.S. POSTAGE

PAID
PATEROS, WA
PERMIT NO.7

http://apple2scans.net

	8/16 - Bert Kersey Where are you?
	The Publisher's Pen - Ross W. Lambert
	Apple Discontinues Macintosh!
	Basically Applesoft: Pretty Polygons - Barry D. Hatchett
	IIGS Graphics: Apple Preferred Pics in Pascal - Have it Your Way - & Their Way - Phil Doto
	Insecticide
	The ZBasic Zealot: More MLI Madness & Working with Words - Ross W. Lambert
	OrcaStrations: No Fits With Inits: Writing an Init From High Level Languages - Mike Westerfield
	Apple II Infinitum
	Gimme a Light - Jerry Kindall
	The Merlin Maniac - Rolling Your Own (Controls) - Steve Stephenson
	Hired Guns
	Our Very Own Stuff

